Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Erysiphespecies infecting oaks in North America are common and widespread, but compared to Asia and Europe, the taxonomy and phylogeny of North American species is unknown. The present study addresses this dispairity. Comprehensive multilocus phylogenetic analyses, includingCAM,GAPDH,GS, ITS,RPB2andTUB, revealed a high degree of co‐evolution between North American oaks and theErysiphespp. that infect them. A concatenated multilocus tree and individual trees based on single loci revealed many highly supported species clades. The clades are formally named to conform with the current taxonomic classification. Available names, such asE. abbreviata,E. calocladophoraandE. extensa, are associated with corresponding clades, and are newly circumscribed supported by ex‐type sequences or, if not available, by the designation of epitypes with ex‐epitype sequences.Erysiphe densissimais reintroduced for a clade that corresponds to the old name ‘E. extensavar.curta’. Eight new species are described, includingErysiphe carolinensis,E. gambelii,E. occidentalis,E. phellos,E. pseudoextensa,E. quercophila,E. quercus‐laurifoliaeandE. schweinitziana. A new diagnostically and taxonomically relevant trait associated with the anamorphs of North AmericanErysiphespecies on oaks has been assssed. This is a special conidiophore‐like lateral outgrowth of the superficial hyphae, comparable to ‘aerial hyphae,’ which are also known for species of the powdery mildew genusCystothecawhich also infectQuercusspecies.more » « less
-
Summary Powdery mildew is an economically important disease caused byc. 1000 different fungal species.Erysiphe vacciniiis an emerging powdery mildew species that is impacting the blueberry industry. Once confined to North America,E. vacciniiis now spreading rapidly across major blueberry‐growing regions, including China, Morocco, Mexico, and the USA, threatening millions in losses.This study documents its recent global spread by analyzing both herbarium specimens, some over 150‐yr‐old, and fresh samples collected world‐wide.Our findings were integrated into a ‘living phylogeny’ via T‐BAS to simplify pathogen identification and enable rapid responses to new outbreaks. We identified 50 haplotypes, two primary introductions world‐wide, and revealed a shift from a generalist to a specialist pathogen.This research provides insights into the complexities of host specialization and highlights the need to address this emerging global threat to blueberry production.more » « less
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available April 21, 2026
-
Free, publicly-accessible full text available March 20, 2026
-
Acer(Sapindaceae) is a major genus of broadleaf trees dominating deciduous forests in the Northern Hemisphere, with Asia exhibiting the highest species diversity. Many economically importantAcerspecies are cultivated for ornamental or timber purposes.Acerpowdery mildew, caused by fungi in the tribeCystotheceae, poses significant global economic and ecological threats. The pathogenicity spectrum remains unclear due to taxonomic uncertainties in its primary causal genera,SawadaeaandTakamatsuella. This study presents a comprehensive phylogenetic-taxonomic analysis of the two genera across East Asia, Europe, and North America. Using 75 ITS and 58 28S rDNA newly obtained sequences, we resolved 12Sawadaeaspecies and oneTakamatsuellaspecies into nine monophyletic clades, revealing marked cryptic diversity (three new species:S. acerina,S. aceris-arguti,S. taii) and two paraphyletic groups (S. bifida/S. negundinis). Taxonomic revisions include:S. bicornissplit into twoformae(f. bicornisandf. polyphaga f. nov.) with distinct host preferences;S. tulasnei(sensu stricto) restricted to Europe/North America, invalidating previous Asian records;S. nankinensisandS. koelreuteriaeform two basal lineages. Phylogenetic positioning confirmedTakamatsuellaas a distinct genus sister toSawadaea, supported by an ITS1 26 bp deletion. Host specificity analysis revealed narrow host ranges (primarilyAcer) with two evolutionary host expansions toKoelreuteria,Aesculus, andLiquidambar. This study also newly describes the asexual morphs of four species (S. aesculi,S. bifida,S. bomiensisandS. kovaliana) and establishes a molecular framework for disease management through clarified phylogeny and taxonomy. Our findings provide critical insights into fungal evolution, host-pathogen interactions, and strategies for mitigating powdery mildew impacts in forest ecosystems.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
