skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2402689

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Predicting flight trajectories is a research area that holds significant merit. In this paper, we propose a data-driven learning framework that leverages the predictive and feature extraction capabilities of the mixture models and seq2seq-based neural networks while addressing prevalent challenges caused by error propagation and dimensionality reduction. After training with this framework, the learned model can improve long-step prediction accuracy significantly given the past trajectories and the context information. The accuracy and effectiveness of the approach are evaluated by comparing the predicted trajectories with the ground truth. The results indicate that the proposed method has outperformed the state-of-the-art predicting methods on a terminal airspace flight trajectory dataset. The trajectories generated by the proposed method have a higher temporal resolution (1 time step per second vs 0.1 time step per second) and are closer to the ground truth. 
    more » « less
    Free, publicly-accessible full text available April 7, 2026