Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The task of crafting procedural programs capable of generating structurally valid 3D shapes easily and intuitively remains an elusive goal in computer vision and graphics. Within the graphics community, generating procedural 3D models has shifted to using node graph systems. They allow the artist to create complex shapes and animations through visual programming. Being a high‐level design tool, they made procedural 3D modelling more accessible. However, crafting those node graphs demands expertise and training. We present GeoCode, a novel framework designed to extend an existing node graph system and significantly lower the bar for the creation of new procedural 3D shape programs. Our approach meticulously balances expressiveness and generalization for part‐based shapes. We propose a curated set of new geometric building blocks that are expressive and reusable across domains. We showcase three innovative and expressive programs developed through our technique and geometric building blocks. Our programs enforce intricate rules, empowering users to execute intuitive high‐level parameter edits that seamlessly propagate throughout the entire shape at a lower level while maintaining its validity. To evaluate the user‐friendliness of our geometric building blocks among non‐experts, we conduct a user study that demonstrates their ease of use and highlights their applicability across diverse domains. Empirical evidence shows the superior accuracy of GeoCode in inferring and recovering 3D shapes compared to an existing competitor. Furthermore, our method demonstrates superior expressiveness compared to alternatives that utilize coarse primitives. Notably, we illustrate the ability to execute controllable local and global shape manipulations. Our code, programs, datasets and Blender add‐on are available athttps://github.com/threedle/GeoCode.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available June 10, 2026
-
We present iSeg, a new interactive technique for segmenting 3D shapes. Previous works have focused mainly on leveraging pre-trained 2D foundation models for 3D segmentation based on text. However, text may be insufficient for accurately describing fine-grained spatial segmentations. Moreover, achieving a consistent 3D segmentation using a 2D model is highly challenging, since occluded areas of the same semantic region may not be visible together from any 2D view. Thus, we design a segmentation method conditioned on fine user clicks, which operates entirely in 3D. Our system accepts user clicks directly on the shape's surface, indicating the inclusion or exclusion of regions from the desired shape partition. To accommodate various click settings, we propose a novel interactive attention module capable of processing different numbers and types of clicks, enabling the training of a single unified interactive segmentation model. We apply iSeg to a myriad of shapes from different domains, demonstrating its versatility and faithfulness to the user's specifications. Our project page is at https://threedle.github.io/iSeg/.more » « lessFree, publicly-accessible full text available December 3, 2025
An official website of the United States government
