- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Ewetz, Rickard (1)
-
Jha, Sumit (1)
-
Rashed, Muhammad_Rashedul_Haq (1)
-
Thijssen, Sven (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In-memory processing offers a promising solution for enhancing the performance of data-intensive applications. While analog in-memory computing demonstrates remarkable efficiency, its limited precision is suitable only for approximate computing tasks. In contrast, digital in-memory computing delivers the deterministic precision necessary to accelerate high-assurance applications. Current digital in-memory computing methods typically involve manually breaking down arithmetic operations into in-memory compute kernels. In contrast, traditional digital circuits are synthesized through intricate and automated design workflows. In this article, we introduce a logic synthesis framework called LOGIC, which facilitates the translation of high-level applications into digital in-memory compute kernels that can be executed using non-volatile memory. We propose techniques for decomposing element-wise arithmetic operations into in-memory kernels while minimizing the number of in-memory operations. Additionally, we optimize the sequence of in-memory operations to reduce non-volatile memory utilization. To address the NP-hard execution sequencing optimization problem, we have developed twolook-aheadalgorithms that offer practical solutions. Additionally, we leverage data layout reorganization to efficiently accelerate applications that heavily rely on sparse matrix-vector multiplication operations. Our experimental evaluations demonstrate that our proposed synthesis approach improves the area and latency of fixed-point multiplication by 84% and 20% compared to the state-of-the-art, respectively. Moreover, when applied to scientific computing applications sourced from the SuiteSparse Matrix Collection, our design achieves remarkable improvements in area, latency, and energy efficiency by factors of 4.8×, 2.6×, and 11×, respectively.more » « less
An official website of the United States government
