skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2404064

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gas phase cation-electron reactions, from electron capture dissociation (ECD; <1 eV electrons) to electron ionization dissociation (>~26 eV electrons), are highly beneficial for biomolecular structural characterization. These techniques offer high sequence coverage, labile posttranslational modification retention, and sidechain loss fragments which can differentiate isomeric residues. For optimum performance, careful tuning of electron energy, flux, and irradiation time is required to reach efficiency at a particular energy regime. The cathode bias voltage (CBV) is the primary determinant of electron energy, while several parameters including CBV, extraction anode lens voltage (LV), and cathode heating current determine electron flux. We present an in-depth examination of how the interplay of these parameters at variable irradiation times results in differing peptide cation-electron reaction regimes. A particularly interesting finding was the prominent high energy fragmentation pathways observed at low (~- 1.0 V) CBV and high (>50 V) LV, as compared with conventional (~5 V) LV for peptide ECD. Specifically, high LV resulted in tandem ionization, observed for both singly- and doubly protonated peptides, alongside increased sequence coverage for both charge states from complex spectra containing a multitude of a/b/c/d/w/x/y/z•-type terminal fragments as well as internal fragments and a large number of neutral losses. Electron flux and energy measurements as well as electron irradiation at constant flux showed that an increased number of higher energy electrons are present at high vs. low LV, i.e., the observed “lens effect” is likely due to the presence of high energy electrons under such conditions. This extraction anode lens effect may explain previous observations of unexpected internal fragments from ECD. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026