skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2404167

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given a simple graph $$G$$, the irregularity strength of $$G$$, denoted $s(G)$, is the least positive integer $$k$$ such that there is a weight assignment on edges $$f: E(G) \to \{1,2,\dots, k\}$$ for which each vertex weight $$f^V(v):= \sum_{u: \{u,v\}\in E(G)} f(\{u,v\})$$ is unique amongst all $$v\in V(G)$$. In 1987, Faudree and Lehel conjectured that there is a constant $$c$$ such that $$s(G) \leq n/d + c$$ for all $$d$$-regular graphs $$G$$ on $$n$$ vertices with $d>1$, whereas it is trivial that $$s(G) \geq n/d$$. In this short note we prove that the Faudree-Lehel Conjecture holds when $$d \geq n^{0.8+\epsilon}$$ for any fixed $$\epsilon >0$$, with a small additive constant $c=28$ for $$n$$ large enough. Furthermore, we confirm the conjecture asymptotically by proving that for any fixed $$\beta\in(0,1/4)$$ there is a constant $$C$$ such that for all $$d$$-regular graphs $$G$$, $$s(G) \leq \frac{n}{d}(1+\frac{C}{d^{\beta}})+28$$, extending and improving a recent result of Przybyło that $$s(G) \leq \frac{n}{d}(1+ \frac{1}{\ln^{\epsilon/19}n})$$ whenever $$d\in [\ln^{1+\epsilon} n, n/\ln^{\epsilon}n]$$ and $$n$$ is large enough. 
    more » « less
  2. Abstract We suggest two related conjectures dealing with the existence of spanning irregular subgraphs of graphs. The first asserts that any $$d$$ -regular graph on $$n$$ vertices contains a spanning subgraph in which the number of vertices of each degree between $$0$$ and $$d$$ deviates from $$\frac{n}{d+1}$$ by at most $$2$$ . The second is that every graph on $$n$$ vertices with minimum degree $$\delta$$ contains a spanning subgraph in which the number of vertices of each degree does not exceed $$\frac{n}{\delta +1}+2$$ . Both conjectures remain open, but we prove several asymptotic relaxations for graphs with a large number of vertices $$n$$ . In particular we show that if $$d^3 \log n \leq o(n)$$ then every $$d$$ -regular graph with $$n$$ vertices contains a spanning subgraph in which the number of vertices of each degree between $$0$$ and $$d$$ is $$(1+o(1))\frac{n}{d+1}$$ . We also prove that any graph with $$n$$ vertices and minimum degree $$\delta$$ contains a spanning subgraph in which no degree is repeated more than $$(1+o(1))\frac{n}{\delta +1}+2$$ times. 
    more » « less