skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2404463

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An interacting spin system is an excellent testbed for fundamental quantum physics and applications in quantum sensing and quantum simulation. For these investigations, detailed information on the interactions, e.g., the number of spins and their interaction strengths, is often required. In this study, we present the identification and characterization of a single nitrogen vacancy (NV) center coupled to two electron spins. In the experiment, we first identify a well-isolated single NV center and characterize its spin decoherence time. Then, we perform NV-detected electron paramagnetic resonance (EPR) spectroscopy to detect surrounding electron spins. From the analysis of the NV-EPR signal, we precisely determine the number of detected spins and their interaction strengths. Moreover, the spectral analysis indicates that the candidates of the detected spins are diamond surface spins. This study demonstrates a promising approach for the identification and characterization of an interacting spin system for realizing entangled sensing using electron spin as quantum reporters. 
    more » « less