skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2405257

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Let (Mn,g) be a complete simply connectedn-dimensional Riemannian manifold with curvature bounds Sectg≤ κ for κ ≤ 0 and Ricg≥ (n− 1)KgforK≤ 0. We prove that for any bounded domain Ω ⊂Mnwith diameterdand Lipschitz boundary, if Ω* is a geodesic ball in the simply connected space form with constant sectional curvature κ enclosing the same volume as Ω, then σ1(Ω) ≤Cσ1(Ω*), where σ1(Ω) and σ1(Ω*) denote the first nonzero Steklov eigenvalues of Ω and Ω* respectively, andC=C(n, κ,K,d) is an explicit constant. When κ =K, we haveC= 1 and recover the Brock–Weinstock inequality, asserting that geodesic balls uniquely maximize the first nonzero Steklov eigenvalue among domains of the same volume, in Euclidean space and the hyperbolic space. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026