- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Berger, Edo (2)
-
Gomez, Sebastian (2)
-
Aamer, Aysha (1)
-
Ajay, Yukta (1)
-
Athukoralalage, Wasundara (1)
-
Blanchard, Peter_K (1)
-
Coulter, David_C (1)
-
Eftekhari, Tarraneh (1)
-
Fiore, Achille (1)
-
Fox, Ori (1)
-
Franz, Noah (1)
-
Gagliano, Alex (1)
-
Gagliano, Alexander (1)
-
Hiramatsu, Daichi (1)
-
Hosseinzadeh, Griffin (1)
-
Howell, D_Andrew (1)
-
Hsu, Brian (1)
-
Karmen, Mitchell (1)
-
Kumar, Harsh (1)
-
Könyves-Tóth, Réka (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract With the advent of the Vera C. Rubin Observatory, the discovery rate of supernovae (SNe) will surpass the rate of SNe with real time spectroscopic follow-up by 3 orders of magnitude. Accurate photometric classifiers are essential to both select interesting events for follow-up in real time and for archival population-level studies. In this work, we investigate the impact of observable host-galaxy information on the classification of SNe, both with and without additional light-curve and redshift information. We find that host-galaxy information alone can successfully isolate relatively pure (>90%) samples of Type Ia SNe with or without redshift information. With redshift information, we can additionally produce somewhat pure (>70%) samples of Type II SNe and superluminous SNe. Additionally with redshift information, host-galaxy properties do not significantly improve the accuracy of SN classification when paired with complete light curves. In the absence of redshift information, however, galaxy properties significantly increase the accuracy of photometric classification. As a part of this analysis, we present the first formal application of a new objective function, the weighted hierarchical cross entropy, to the problem of SN classification. This objective function more naturally accounts for the hierarchical nature of SN classes and, more broadly, transients. Finally, we present a new set of SN classifications for the Pan-STARRS Medium Deep Survey of SNe that lack spectroscopic redshift, increasing the full photometric sample to >4400 events.more » « lessFree, publicly-accessible full text available December 11, 2025
-
Gomez, Sebastian; Nicholl, Matt; Berger, Edo; Blanchard, Peter_K; Villar, V_Ashley; Rest, Sofia; Hosseinzadeh, Griffin; Aamer, Aysha; Ajay, Yukta; Athukoralalage, Wasundara; et al (, Monthly Notices of the Royal Astronomical Society)ABSTRACT We present the most comprehensive catalogue to date of Type I superluminous supernovae (SLSNe), a class of stripped-envelope supernovae (SNe) characterized by exceptionally high luminosities. We have compiled a sample of 262 SLSNe reported through 2022 December 31. We verified the spectroscopic classification of each SLSN and collated an exhaustive data set of ultraviolet, optical, and infrared photometry totalling over 30 000 photometric detections. Using these data, we derive observational parameters such as the peak absolute magnitudes, rise and decline time-scales, as well as bolometric luminosities, temperature, and photospheric radius evolution for all SLSNe. Additionally, we model all light curves using a hybrid model that includes contributions from both a magnetar central engine and the radioactive decay of $$^{56}$$Ni. We explore correlations among various physical and observational parameters, and recover the previously found relation between ejecta mass and magnetar spin, as well as the overall progenitor pre-explosion mass distribution with a peak at $$\approx 6.5$$ M$$_\odot$$. We find no significant redshift dependence for any parameter, and no evidence for distinct subtypes of SLSNe. We find that only a small fraction of SLSNe, $$\lt 3$$ per cent, are best fit with a significant radioactive decay component $$\gtrsim 50$$ per cent. We provide several analytical tools designed to simulate typical SLSN light curves across a broad range of wavelengths and phases, enabling accurate K-corrections, bolometric scaling calculations, and inclusion of SLSNe in survey simulations or future comparison works.more » « less
An official website of the United States government
