skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2406533

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Global crop production faces increasing threats from the rise in frequency, duration, and intensity of drought and heat stress events due to climate change. Most staple food crops, including wheat, rice, soybean, and corn that provide over half of the world’s caloric intake, are not well adapted to withstand heat or drought. Efforts to breed or engineer stress-tolerant crops have had limited success due to the complexity of tolerance mechanisms and the variability of agricultural environments. Effective solutions require a shift towards fundamental research that incorporates realistic agricultural settings and focuses on practical outcomes for farmers. This review explores the genetic and environmental factors affecting heat and drought tolerance in major crops, examines the physiological and molecular mechanisms underlying these stress responses, and evaluates the limitations of current breeding programs and models. It also discusses emerging technologies and approaches that could enhance crop resilience, such as synthetic biology, advanced breeding techniques, and high-throughput phenotyping. Finally, this review emphasizes the need for interdisciplinary research and collaboration with stakeholders to translate fundamental research into practical agricultural solutions. 
    more » « less
  2. Abstract The Plant Metabolic Network (PMN) is a free online database of plant metabolism available at https://plantcyc.org. The latest release, PMN 16, provides metabolic databases representing >1200 metabolic pathways, 1.3 million enzymes, >8000 metabolites, >10 000 reactions and >15 000 citations for 155 plant and green algal genomes, as well as a pan-plant reference database called PlantCyc. This release contains 29 additional genomes compared with PMN 15, including species listed by the African Orphan Crop Consortium and nonflowering plant species. Furthermore, 52 new enzymes with experimentally supported function information have been included in this release. The single-species databases contain a combination of experimental information from the literature and computationally predicted information obtained through PMN’s database generation pipeline for a single species, while PlantCyc contains only experimental information but for any species within Viridiplantae. PMN is a comprehensive resource for querying, visualizing, analyzing and interpreting omics data with metabolic knowledge. It also serves as a useful and interactive tool for teaching plant metabolism. 
    more » « less