skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2407006

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Spiral gravity separators are designed to separate multi-species slurry components based on differences in density and size. Previous studies [S. Lee et al., Phys. Fluids 26, 043302 (2014); D. Arnold et al., Phys. Fluids 31, 073305 (2019)] have investigated steady-state solutions for mixtures of liquids and single particle species in thin-film flows. However, these models are constrained to single-species systems and cannot describe the dynamics of multi-species separation. In contrast, our analysis extends to mixtures containing two particle species of differing densities, revealing that they undergo radial separation—an essential mechanism for practical applications in separating particles of varying densities. This work models gravity-driven bidensity slurries in a spiral trough by incorporating particle interactions, using empirically derived formulas for particle fluxes from previous bidensity studies on inclined planes [J. T. Wong and A. L. Bertozzi, Phys. D 330, 47–57 (2016)]. Specifically, we study a thin-film bidensity slurry flowing down a rectangular channel helically wound around a vertical axis. Through a thin-film approximation, we derive equilibrium profiles for the concentration of each particle species and the fluid depth. Additionally, we analyze the influence of key design parameters, such as spiral radius and channel width, on particle concentration profiles. Our findings provide valuable insights into optimizing spiral separator designs for enhanced applicability and adaptability. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026