skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2407089

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a systematic investigation of extremely X-ray variable active galactic nuclei (AGNs) in the ≈5.3 deg2XMM-SERVS XMM-LSS region. Eight variable AGNs are identified with rest-frame 2 keV flux density variability amplitudes around 6–12. We comprehensively analyze the X-ray and multiwavelength data to probe the origin of their extreme X-ray variability. It is found that their extreme X-ray variability can be ascribed to changing accretion state or changing obscuration from dust-free absorbers. For five AGNs, their X-ray variability is attributed to changing accretion state, supported by contemporaneous multiwavelength variability and the absence of X-ray absorption in the low-state spectra. With new Multiple Mirror Telescope (MMT) spectra for four of these sources, we confirm one changing-look AGN. One MMT AGN lacks multiepoch spectroscopic observations, while the other two AGNs do not exhibit changing-look behavior, likely because the MMT observations did not capture their high states. The X-ray variability of the other three AGNs is explained by changing obscuration, and they show only mild long-term optical/IR variability. The absorbers of these sources are likely clumpy accretion-disk winds, with variable column densities and covering factors along the lines of sight. 
    more » « less
    Free, publicly-accessible full text available April 3, 2026
  2. Abstract Tidal disruption events (TDEs) could be an important growth channel for massive black holes in dwarf galaxies. Theoretical work suggests that the observed active galactic nuclei (AGNs) in dwarf galaxies are predominantly TDE-powered. To assess this claim, we perform variability analyses on the dwarf-hosted AGNs detected in the 7 Ms Chandra Deep Field-South survey, with observations spanning ≈16 yr. Based on the spectral energy distribution modeling withx-cigale, we select AGNs hosted by dwarf galaxies (stellar mass below 1010M). We focus on X-ray sources with full-band detections, leading to a sample of 78 AGNs (0.122 ≤z≤ 3.515). We fit the X-ray light curves with a canonical TDE model oft−5/3and a constant model. If the former outperforms the latter in fitting quality for a source, we consider the source as a potential TDE. We identify five potential TDEs, constituting a small fraction of our sample. Using true- and false-positive rates obtained from fitting models to simulated light curves, we perform Bayesian analysis to obtain the posterior of the TDE fraction for our sample. The posterior peaks close to zero (2.56%), and we obtain a 2σupper limit of 9.80%. Therefore, our result indicates that the observed AGNs in dwarf galaxies are not predominantly powered by TDEs. 
    more » « less
    Free, publicly-accessible full text available January 30, 2026
  3. Abstract The coevolution of supermassive black holes and their host galaxies represents a fundamental question in astrophysics. One approach to investigating this question involves comparing the star formation rates (SFRs) of active galactic nuclei (AGNs) with those of typical star-forming galaxies. At relatively low redshifts (z≲ 1), radio AGNs manifest diminished SFRs, indicating suppressed star formation, but their behavior at higher redshifts is unclear. To examine this, we leveraged galaxy and radio-AGN data from the well-characterized W-CDF-S, ELAIS-S1, and XMM-LSS fields. We established two mass-complete reference star-forming galaxy samples and two radio-AGN samples, consisting of 1763 and 6766 radio AGNs, the former being higher in purity and the latter more complete. We subsequently computed star-forming fractions (fSF; the fraction of star-forming galaxies to all galaxies) for galaxies and radio-AGN host galaxies and conducted a robust comparison between them up toz≈ 3. We found that the tendency for radio AGNs to reside in massive galaxies primarily accounts for their lowfSF, which also shows a strong negative dependence uponMand a strong positive evolution withz. To investigate further the star formation characteristics of those star-forming radio AGNs, we constructed the star-forming main sequence (MS) and investigated the behavior of the position of AGNs relative to the MS atz≈ 0–3. Our results reveal that radio AGNs display lower SFRs than star-forming galaxies in the low-zand high-Mregime and, conversely, exhibit comparable or higher SFRs than MS star-forming galaxies at higher redshifts or lowerM
    more » « less
    Free, publicly-accessible full text available December 20, 2025
  4. Abstract Dust-obscured galaxies (DOGs) are enshrouded by dust and many are believed to host accreting supermassive black holes (SMBHs), which makes them unique objects for probing the coevolution of galaxies and SMBHs. We select and characterize DOGs in the 13 deg2XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS), leveraging the superb multiwavelength data—from X-rays to radio. We select 3738 DOGs atz≈ 1.6–2.1 in XMM-SERVS, while maintaining good data quality without introducing significant bias. This represents the largest DOG sample with thorough multiwavelength source characterization. Spectral energy distribution modeling shows DOGs are a heterogeneous population consisting of both normal galaxies and active galactic nuclei (AGNs). Our DOGs are massive ( log M / M 10.7 - 11.3 ), 174 are detected in X-rays, and they are generally radio-quiet systems. X-ray detected DOGs are luminous and are moderately to heavily obscured in X-rays. Stacking analyses for the X-ray undetected DOGs show highly significant average detections. Critically, we compare DOGs with matched galaxy populations. DOGs have similar AGN fractions compared with typical galaxy populations. X-ray detected DOGs have higherMand higher X-ray obscuration, but they are not more star-forming than typical X-ray AGNs. Our results potentially challenge the relevance of the merger-driven galaxy-SMBH coevolution framework for X-ray detected DOGs. 
    more » « less
  5. Abstract Supermassive black holes (SMBHs) can grow through both accretion and mergers. It is still unclear how SMBHs evolve under these two channels from high redshifts to the SMBH population we observe in the local Universe. Observations can directly constrain the accretion channel but cannot effectively constrain mergers yet, while cosmological simulations provide galaxy merger information but can hardly return accretion properties consistent with observations. In this work, we combine the observed accretion channel and the simulated merger channel, taking advantage of observations and cosmological simulations, to depict a realistic evolution pattern of the SMBH population. With this methodology, we can derive the scaling relation between the black hole mass (MBH) and host-galaxy stellar mass (M), and the local black hole mass function (BHMF). Our scaling relation is lower than those based on dynamically measuredMBH, supporting the claim that dynamically measured SMBH samples may be biased. We show that the scaling relation has little redshift evolution. The BHMF steadily increases fromz= 4 toz= 1 and remains largely unchanged fromz= 1 toz= 0. The overall SMBH growth is generally dominated by the accretion channel, with possible exceptions at high mass (MBH≳ 108MorM≳ 1011M) and low redshift (z≲ 1). We also predict that around 25% of the total SMBH mass budget in the local Universe may be locked within long-lived, wandering SMBHs, and the wandering mass fraction and wandering SMBH counts increase withM
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  6. ABSTRACT We present a new method for modelling the kinematics of galaxies from interferometric observations by performing the optimization of the kinematic model parameters directly in visibility space instead of the conventional approach of fitting velocity fields produced with the clean algorithm in real-space. We demonstrate our method on Atacama Large Millimeter/submillimeter Array (ALMA) observations of $$^{12}$$CO (2–1), (3–2), or (4–3) emission lines from an initial sample of 30 massive 850 $$\mu$$m-selected dusty star-forming galaxies with far-infrared luminosities $$\gtrsim$$\, 10^{12}$$ L$$_{\odot }$$ in the redshift range $$z \sim$$ 1.2–4.7. Using the results from our modelling analysis for the 12 of the 20 sources with the highest signal-to-noise emission lines that show disc-like kinematics, we conclude the following: (i) our sample prefers a CO-to-$$H_2$$ conversion factor, of $$\alpha _{\rm CO} = 0.74 \pm 0.37$$; (ii) these far-infrared luminous galaxies follow a similar Tully–Fisher relation between the circular velocity, $$V_{\rm circ}$$, and baryonic mass, $$M_{\rm b}$$, as less strongly star-forming samples at high redshift, but extend this relation to much higher masses – showing that these are some of the most massive disc-like galaxies in the Universe; (iii) finally, we demonstrate support for an evolutionary link between massive high-redshift dusty star-forming galaxies and the formation of local early-type galaxies using the both the distributions of the baryonic and kinematic masses of these two populations on the $$M_{\rm b}$$ – $$\sigma$$ plane and their relative space densities. 
    more » « less
  7. Abstract We present photometric selection of type 1 quasars in the ≈5.3 deg2XMM-Large Scale Structure survey field with machine learning. We constructed our training and blind-test samples using spectroscopically identified Sloan Digital Sky Survey quasars, galaxies, and stars. We utilized the XGBoost machine learning method to select a total of 1591 quasars. We assessed the classification performance based on the blind-test sample, and the outcome was favorable, demonstrating high reliability (≈99.9%) and good completeness (≈87.5%). We used XGBoost to estimate photometric redshifts of our selected quasars. The estimated photometric redshifts span a range from 0.41 to 3.75. The outlier fraction of these photometric redshift estimates is ≈17%, and the normalized median absolute deviation (σNMAD) is ≈0.07. To study the quasar disk–corona connection, we constructed a subsample of 1016 quasars with Hyper Suprime-Cami < 22.5 after excluding radio-loud and potentially X-ray-absorbed quasars. The relation between the optical-to-X-ray power-law slope parameter (αOX) and the 2500 Å monochromatic luminosity (L2500Å) for this subsample is α OX = ( 0.156 ± 0.007 ) log L 2500 Å + ( 3.175 ± 0.211 ) with a dispersion of 0.159. We found this correlation in good agreement with the correlations in previous studies. We explored several factors, which may bias theαOX–L2500Årelation, and found that their effects are not significant. We discussed possible evolution of theαOX–L2500Årelation with respect toL2500Åor redshift. 
    more » « less
  8. Abstract We present JWST NIRCam imaging targeting 13z ~ 3 infrared-luminous (LIR ∼ 5 × 1012L) galaxies from the ALESS survey with uniquely deep, high-resolution (0 . 08–0 . 16) Atacama Large Millimeter/submillimeter Array 870μm imaging. The 2.0–4.4μm (observed frame) NIRCam imaging reveals the rest-frame near-infrared stellar emission in these submillimeter-selected galaxies at the same (sub)kiloparsec resolution as the 870μm dust continuum. The newly revealed stellar morphologies show striking similarities with the dust continuum morphologies at 870μm, with the centers and position angles agreeing for most sources, clearly illustrating that the spatial offsets reported previously between the 870μm and Hubble Space Telescope morphologies were due to strong differential dust obscuration. The F444W sizes are 78% ± 21% larger than those measured at 870μm, in contrast to recent results from hydrodynamical simulations that predict larger 870μm sizes. We report evidence for significant dust obscuration in F444W for the highest-redshift sources, emphasizing the importance of longer-wavelength MIRI imaging. The majority of the sources show evidence that they are undergoing mergers/interactions, including tidal tails/plumes—some of which are also detected at 870μm. We find a clear correlation between NIRCam colors and 870μm surface brightness on  ∼1 kpc scales, indicating that the galaxies are primarily red due to dust—not stellar age—and we show that the dust structure on  ∼kpc scales is broadly similar to that in nearby galaxies. Finally, we find no strong stellar bars in the rest-frame near-infrared, suggesting the extended bar-like features seen at 870μm are highly obscured and/or gas-dominated structures that are likely early precursors to significant bulge growth. 
    more » « less
    Free, publicly-accessible full text available January 10, 2026
  9. Abstract Dust-obscured galaxies (DOGs) containing central supermassive black holes (SMBHs) that are rapidly accreting (i.e., having high Eddington ratios,λEdd) may represent a key phase closest to the peak of both the black hole and galaxy growth in the coevolution framework for SMBHs and galaxies. In this work, we present a 68 ks XMM-Newton observation of the high-λEddDOG J1324+4501 atz∼ 0.8, which was initially observed by Chandra. We analyze the XMM-Newton spectra jointly with archival Chandra spectra. In performing a detailed X-ray spectral analysis, we find that the source is intrinsically X-ray luminous with log ( L X /erg s 1 ) = 44.71 0.12 + 0.08 and heavily obscured with log ( N H / cm 2 ) = 23.43 0.13 + 0.09 . We further utilize UV-to-IR archival photometry to measure and fit the source’s spectral energy distribution to estimate its host-galaxy properties. We present a supplementary comparison sample of 21 X-ray luminous DOGs from the XMM-SERVS survey with sufficient (>200) 0.5–10 keV counts to perform a similarly detailed X-ray spectral analysis. Of the X-ray luminous DOGs in our sample, we find that J1324+4501 is the most remarkable, possessing one of the highest X-ray luminosities, column densities, and star formation rates. We demonstrate that J1324+4501 is in an extreme evolutionary stage where SMBH accretion and galaxy growth are at their peaks. 
    more » « less
  10. ABSTRACT Submillimetre galaxies (SMGs) are some of the most extreme star-forming systems in the Universe, whose place in the framework of galaxy evolution is as yet uncertain. It has been hypothesized that SMGs are progenitors of local early-type galaxies, requiring that SMGs generally reside in galaxy cluster progenitors at high redshift. We test this hypothesis and explore SMG environments using a narrow-band VLT/HAWK-I+GRAAL study of H $$\alpha$$ and [O iii] emitters around an unbiased sample of three ALMA-identified and spectroscopically confirmed SMGs at $$z \sim 2.3$$ and $$\sim 3.3$$, where these SMGs were selected solely on spectroscopic redshift. Comparing with blank-field observations at similar epochs, we find that one of the three SMGs lies in an overdensity of emission-line sources on the $$\sim 4$$ Mpc scale of the HAWK-I field of view, with overdensity parameter $$\delta _{g} = 2.6^{+1.4}_{-1.2}$$. A second SMG is significantly overdense only on $$\lesssim 1.6$$ Mpc scales and the final SMG is consistent with residing in a blank field environment. The total masses of the two overdensities are estimated to be $$\log (M_{h}/{\rm M}_{\odot }) =$$ 12.1–14.4, leading to present-day masses of $$\log (M_{h,z=0}/{\rm M}_{\odot }) =$$ 12.9–15.9. These results imply that SMGs occupy a range of environments, from overdense protoclusters or protogroups to the blank field, suggesting that while some SMGs are strong candidates for the progenitors of massive elliptical galaxies in clusters, this may not be their only possible evolutionary pathway. 
    more » « less