skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2408324

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a view of the stellar halo in the inner-central regions of the Milky Way (R≲ 10 kpc) mapped by RR Lyrae stars. The combined BRAVA-RR/APOGEE RR Lyrae catalog is used to obtain a sample of 281 RR Lyrae stars located in the bulge region of the Galaxy, but with orbits indicating they belong to the inner-central halo. The RR Lyrae stars in the halo are more metal-poor than the bulge RR Lyrae stars and have pulsation properties more consistent with an accreted population. We use the Milky Way-like zoom-in cosmological simulation Auriga to compare the properties of the RR Lyrae stars to those expected from the “Gaia-Enceladus-Sausage” (GES) merger. The integrals of motions and eccentricities of the RR Lyrae stars are consistent with a small fraction of 6–9% ± 2% of the inner-central halo RR Lyrae population having originated from GES. This fraction, lower than what is seen in the solar neighborhood, is consistent with trends seen in the Auriga simulation, where a GES-like merger would have a decreasing fraction of GES stars at small Galactocentric radii compared to other accreted populations. Very few of the Auriga inner Galaxy GES-18 particles have properties consistent with belonging to a bulge population with (zmax< 1.1 kpc), indicating that no (or very few) RR Lyrae stars with bulge orbits should have originated from GES. 
    more » « less
    Free, publicly-accessible full text available August 19, 2026
  2. Context.Bulge globular clusters (BGCs) are exceptional tracers of the formation and chemodynamical evolution of this oldest Galactic component. Until now, observational difficulties have prevented us from taking full advantage of these powerful Galactic archeological tools. Aims.The bulge Cluster APOgee Survey (CAPOS) addresses this key topic by observing a large number of BGCs, most of which have been poorly studied until now. We aim to obtain accurate mean values for metallicity, [α/Fe], and radial velocity, as well as abundances for eleven other elements. Here, we present final parameters based on the APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) for all 18 CAPOS BGCs. Methods.We used atmospheric parameters, abundances, and velocities from ASPCAP in DR17. Results.First, we carried out a stringent selection of cluster members, finding a total of 303 with a spectral signal-to-noise value of S/N>70 and an additional 125 with a lower S/N. We confirmed the result of prior ASPCAP multiple population studies, namely, that stars with high [N/Fe] abundances show higher [Fe/H] than their lower [N/Fe] counterparts. Furthermore, the Mg, Ca, and globalαabundances exhibit similar trends, while Si is well-behaved. The [Fe/H] value of these second-population stars was corrected to derive the mean metallicity. Mean metallicities were determined to a precision of 0.05 dex, [α/Fe] to 0.06 dex, and radial velocity to 3.4 km/s. No clusters displayed any strong evidence of internal metallicity variations, including M22. Abundances for eleven other elements using only first-population stars were calculated. Our values are shown to be in good general agreement with the literature. We developed a new chemodynamical GC classification scheme, synthesizing the results of several recent studies. We also compiled a set of up-to-date metallicities. The BGC metallicity distribution is bimodal, with peaks near [Fe/H] = −0.45, and −1.1, with the metal-poor peak displaying a strong dominance. The entire in situ sample, including disk and BGCs, displays the same bimodality, while ex situ GCs are unimodal, with a peak around −1.6. Surprisingly, we see only a small and statistically insignificant difference in the mean [Si/Fe] of in situ and ex situ GCs. The four GCs with the lowest [Si/Fe] values are all ex situ and relatively young, with three belonging to Sagittarius; no other correlations are evident. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026