skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2409407

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Using adiabatic point-particle black hole perturbation theory, we simulate plausible gravitational wave (GW) signatures in two exotic scenarios (i) where a small black hole is emitted by a larger one (‘black hole emission’) and (ii) where a small black hole is emitted by a larger one and subsequently absorbed back (‘black hole absorption’). While such scenarios are forbidden in general relativity (GR), alternative theories (such as certain quantum gravity scenarios obeying the weak gravity conjecture, white holes, and Hawking radiation) may allow them. By leveraging the phenomenology of black hole emission and absorption signals, we introduce straightforward modifications to existing gravitational waveform models to mimic gravitational radiation associated with these exotic events. We anticipate that these (incomplete but) initial simulations, coupled with the adjusted waveform models, will aid in the development of null tests for GR using GWs. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026