skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2409855

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many inverse problems are naturally formulated as a PDE-constrained optimization problem. These non-linear, large-scale, constrained optimization problems know many challenges, of which the inherent non-linearity of the problem is an important one. In this paper, we focus on a relaxed formulation of the PDE-constrained optimization problem and provide analysis for its properties including convexity under certain assumptions. Starting from an infinite-dimensional formulation of the inverse problem with discrete data, we propose a general framework for the analysis and discretisation of such problems. The relaxed formulation of the PDE-constrained optimization problem is shown to reduce to a weighted non-linear least-squares problem. The weight matrix turns out to be the Gram matrix of solutions of the PDE, and in some cases be estimated directly from the measurements. The latter observation points to a potential way to unify recently proposed data-driven reduced-order models for inverse problems with PDE-constrained optimization. We provide a number of representative case studies and numerical examples to illustrate our findings. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026