skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2410054

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Efficient storage of telecom-band quantum optical information represents a crucial milestone for establishing distributed quantum optical networks. Erbium ions in crystalline hosts provide a promising platform for telecom quantum memories; however, their practical applications have been hindered by demanding operational conditions, such as ultra-high magnetic fields and ultra-low temperatures. In this work, we demonstrate the storage of telecom photonic qubits encoded in polarization, frequency, and time-bin bases. Using the atomic frequency comb protocol in an Er3+-doped crystal, we developed a memory initialization scheme that improves storage efficiency by over an order of magnitude. The observed results were made possible by the deliberate selection of the pumping sequence and the minimization of lattice interactions, to the extent possible without the use of dilution refrigerators or superconducting magnets. 
    more » « less
  2. We propose a light storage technique utilizing an array of photonic resonators that mimic atomic frequency comb memory. This method can be implemented on a solid-state photonic chip without requiring spectral hole burning. By eliminating the need for long preparation cycles and leveraging tunable photonic resonances, this approach offers high bandwidth, high efficiency, and a fast duty cycle simultaneously and without compromise. 
    more » « less