skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2410255

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available July 27, 2026
  3. Free, publicly-accessible full text available May 1, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Free, publicly-accessible full text available January 1, 2026
  6. Free, publicly-accessible full text available December 1, 2025
  7. Active back-support exoskeleton has gained recognition as a potential solution to mitigate work- related musculoskeletal disorders. However, their utilization in the construction industry can introduce unintended consequences, such as increased fall hazards. This study examines the implications of using active back-support exoskeleton on fall risk during construction framing tasks, incorporating wearable pressure insoles for data collection. Two experimental conditions were established, one involving the simulation of construction framing tasks with exoskeleton and the other without exoskeleton. These tasks encompassed six subtasks: measuring, assembly, nailing, lifting, moving, and installation. Foot plantar pressure distribution was recorded across various spatial foot regions, including the arch, toe, metatarsal, and heel. Statistical analysis, employing a paired t-test on peak plantar pressure data, revealed that the use of active back-support exoskeleton significantly increased fall risks in at least one of the foot regions for all subtasks, except for the assembly subtask. These findings provide valuable insights for construction stakeholders when making decisions regarding the adoption of active back-support exoskeleton in the industry. Moreover, they inform exoskeleton manufacturers of the need to develop adaptive and customized exoskeleton solutions tailored to the unique demands of construction sites. 
    more » « less