skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2410667

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The discovery of functional dye materials with superior optical properties is crucial for advancing technologies in biomedical imaging, organic photovoltaics, and quantum information systems. Recent advancements highlight the need to accelerate this discovery process by integrating computational strategies with experimental methods. In this regard, we have employed a computational approach to explore the latent space of dye materials, utilizing swarm optimization techniques to efficiently navigate complex chemical spaces and identify optimal values of molecular properties using machine learning methods based on target properties, such as high extinction coefficients ($$\varepsilon$$). The latent space based evaluation outperformed all available features of a domain. This approach enhances inverse material design by systematically correlating molecular parameters with desired optical characteristics by implementing VAEs. In this process, by defining target properties as inputs, the model effectively determines the key molecular features necessary for engineering high-performance dye compounds. 
    more » « less
    Free, publicly-accessible full text available June 23, 2026