- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Gu, Mengyang (4)
-
Luo, Yimin (2)
-
Bates, Christopher_M (1)
-
Chen, Juan (1)
-
Fang, Xinyi (1)
-
Hawker, Craig_J (1)
-
He, Siming (1)
-
He, Yue (1)
-
Kohl, Phillip_A (1)
-
Li, Youli (1)
-
Liu, Xubo (1)
-
Luo, Yuxin (1)
-
Murphy, Elizabeth_A (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Block copolymers play a vital role in materials science due to their diverse self‐assembly behavior. Traditionally, exploring the block copolymer self‐assembly and associated structure–property relationships involve iterative synthesis, characterization, and theory, which is labor‐intensive both experimentally and computationally. Here, we introduce a versatile, high‐throughput workflow toward materials discovery that integrates controlled polymerization and automated chromatographic separation with a novel physics‐informed machine‐learning algorithm for the rapid analysis of small‐angle X‐ray scattering data. Leveraging the expansive and high‐quality experimental data sets generated by fractionating polymers using automated chromatography, this machine‐learning method effectively reduces data dimensionality by extracting chemical‐independent features from SAXS data. This new approach allows for the rapid and accurate prediction of morphologies without repetitive and time‐consuming manual analysis, achieving out‐of‐sample predictive accuracy of around 95% for both novel and existing materials in the training data set. By focusing on a subset of samples with large predictive uncertainty, only a small fraction of the samples needs to be inspected to further improve accuracy. Collectively, the synergistic combination of controlled synthesis, automated chromatography, and data‐driven analysis creates a powerful workflow that markedly expedites the discovery of structure–property relationships in advanced soft materials.more » « less
-
Gu, Mengyang; He, Siming (, SIAM Journal on Mathematical Analysis)Free, publicly-accessible full text available August 31, 2026
-
Luo, Yuxin; Chen, Juan; Gu, Mengyang; Luo, Yimin (, Soft Matter)We present an efficient method for investigating kinetics of gelling system, demonstrating that combining active learning and microrheology can streamline response surface construction and predict how gelation times influence the cell morphology.more » « lessFree, publicly-accessible full text available January 29, 2026
-
Gu, Mengyang; He, Yue; Liu, Xubo; Luo, Yimin (, Physical Review E)
An official website of the United States government
