skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2411068

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Next-generation gravitational wave detectors such as Cosmic Explorer, the Einstein Telescope, and LISA, demand highly accurate and extensive gravitational wave (GW) catalogs to faithfully extract physical parameters from observed signals. However, numerical relativity (NR) faces significant challenges in generating these catalogs at the required scale and accuracy on modern computers, as NR codes do not fully exploit modern GPU capabilities. In response, we extend NRPy, a Python-based NR code-generation framework, to develop NRPyEllipticGPU—a CUDA-optimized elliptic solver tailored for the binary black hole (BBH) initial data problem. NRPyEllipticGPU is the first GPU-enabled elliptic solver in the NR community, supporting a variety of coordinate systems and demonstrating substantial performance improvements on both consumer-grade and HPC-grade GPUs. We show that, when compared to a high-end CPU, NRPyEllipticGPU achieves on a high- end GPU up to a sixteenfold speedup in single precision while increasing double- precision performance by a factor of 2–4. This performance boost leverages the GPU’s superior parallelism and memory bandwidth to achieve a compute-bound application and enhancing the overall simulation efficiency. As NRPyEllipticGPU shares the core infrastructure common to NR codes, this work serves as a practical guide for developing full, CUDA-optimized NR codes. 
    more » « less
  2. Abstract We presentAsterX, a novel open-source, modular, GPU-accelerated, fully general relativistic magnetohydrodynamic (GRMHD) code designed for dynamic spacetimes in 3D Cartesian coordinates, and tailored for exascale computing. We utilize block-structured adaptive mesh refinement (AMR) throughCarpetX, the new driver for theEinstein Toolkit, which is built onAMReX, a software framework for massively parallel applications.AsterXemploys the Valencia formulation for GRMHD, coupled with the ‘Z4c’ formalism for spacetime evolution, while incorporating high resolution shock capturing schemes to accurately handle the hydrodynamics.AsterXhas undergone rigorous testing in both static and dynamic spacetime, demonstrating remarkable accuracy and agreement with other codes in literature. Using subcycling in time, we find an overall performance gain of factor 2.5–4.5. Benchmarking the code through scaling tests on OLCF’s Frontier supercomputer, we demonstrate a weak scaling efficiency of about 67%–77% on 4096 nodes compared to an 8-node performance. 
    more » « less
  3. Abstract Systems consisting of spheres rolling on elastic membranes have been used to introduce a core conceptual idea of General Relativity: how curvature guides the movement of matter. However, such schemes cannot accurately represent relativistic dynamics in the laboratory because of the dominance of dissipation and external gravitational fields. Here we demonstrate that an “active” object (a wheeled robot), which moves in a straight line on level ground and can alter its speed depending on the curvature of the deformable terrain it moves on, can exactly capture dynamics in curved relativistic spacetimes. Via the systematic study of the robot’s dynamics in the radial and orbital directions, we develop a mapping of the emergent trajectories of a wheeled vehicle on a spandex membrane to the motion in a curved spacetime. Our mapping demonstrates how the driven robot’s dynamics mix space and time in a metric, and shows how active particles do not necessarily follow geodesics in the real space but instead follow geodesics in a fiducial spacetime. The mapping further reveals how parameters such as the membrane elasticity and instantaneous speed allow the programming of a desired spacetime, such as the Schwarzschild metric near a non-rotating blackhole. Our mapping and framework facilitate creation of a robophysical analog to a general relativistic system in the laboratory at low cost that can provide insights into active matter in deformable environments and robot exploration in complex landscapes. 
    more » « less
  4. Free, publicly-accessible full text available September 1, 2026