skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2411808

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Onset of reconnection in the magnetotail requires its current sheet (CS) to thin down to the thermal ion gyroradius (or thinner) to demagnetize ions (or even electrons) and to provide their Landau dissipation. However, in isotropic plasma models of the tail the ion‐scale CSs inflate too rapidly with the distance from Earth to remain ion‐scale beyond 20 Earth's radii, where most X‐lines are observed. A key to solving this problem was recently found due to the discovery of “overstretched” thin CSs (OTCSs): If an ion‐scale CS is embedded into a much thicker CS with even a weak field‐aligned ion anisotropy, its current density iso‐contours can be stretched far beyond the magnetic field lines. Here we investigate onset of reconnection in OTCS with their scales and features closer to the observed geometry and evolution of Earth's magnetotail: extension beyond 100 ion inertial lengths, magnetic flux accumulation, dipole field effects and weak external driving. 2‐D particle‐in‐cell (PIC) simulations with open boundaries show that OTCSs help explain the observed X‐line location in the magnetotail. The reconnection electric field strongly exceeds both the external driving field and the slow convection electric field caused by the latter. The magnetic topology change (onset of reconnection proper) is preceded by divergent plasma flows suggesting that the latter are produced by the ion tearing plasma motions. OTCS are also shown to form in isotropic CS after an even shorter driving period, but their transient nature may question universality of this onset scenario. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026