skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2412257

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Radioactive pertechnetate (TcO4) from the nuclear fuel cycle presents a severe risk to the environment due to its large solubility in water and non‐complexing nature. By utilizing the chaotropic properties of TcO4and its nonradioactive surrogate perrhenate (ReO4) and the principle of chaotropic interactions, a series of quaternary ammonium‐containing polyelectrolyte brush‐grafted silica particles are designed and applied to remove ReO4from water. These cationic hairy particles (HPs) are synthesized by surface‐initiated atom transfer radical polymerization of 2‐(N,N‐dimethylamino)ethyl methacrylate and subsequent quaternization with various halogen compounds. Dynamic light scattering (DLS) studies showed that the HPs with sufficiently longN‐alkyl andN‐benzyl substituents underwent sharp size reduction transitions in water when titrated with a KReO4solution, indicating strong chaotropic interactions between the brushes and ReO4. All the HPs exhibited fast adsorption kinetics; the HPs with longerN‐alkyl andN‐benzyl substituents showed higher capabilities of removing ReO4than those with shorterN‐alkyls. Moreover, the brush particles with longerN‐substituents displayed a significantly stronger ability in selective adsorption of ReO4than the particles with shorterN‐substituents in the presence of competing anions, such as F, Cl, NO3, and SO42−. This work opens a new avenue to design high‐performance adsorbent materials for TcO4and ReO4
    more » « less
  2. Free, publicly-accessible full text available February 25, 2026