skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2412395

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fatigue scattering caused by inherent geometrical defects in laser powder bed fusion (LPBF) imposes a great challenge for fabricating reliable load-bearing components. However, the lack of sufficient fatigue data and the limitation of runout conditions rationalize the need to bridge the gap between limited data and fatigue reliability. This work has developed two models based on censored linear regression (CR) and censored Gaussian process regression (CGP), respectively, to predict fatigue life scattering bounds at a given confidence for both as-built and heat-treated SS 316L samples. Furthermore, fatigue life reliability is modeled under different stress amplitudes with a CGP-based reliability model. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026