skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2412818

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This file contains data tables representing gravitational wave backgrounds (GWBs) produced by Nambu-Goto cosmic strings evolved under numerical gravitational backreaction. The GWBs were produced using the methodology of "More accurate gravitational wave backgrounds from cosmic strings" [to appear], by the same authors as this dataset. The file is organized in three columns: The base-10 logarithm of the string coupling to gravity, G\mu. The range is from -8 to -22 in steps of -0.1. The frequency in Hz, f. The range is from 10^(-12) Hz to 10^5 Hz in multiplicative steps of 10^(0.02). The critical energy density fraction in gravitational waves scaled by the dimensionless Hubble constant squared, \Omega_{gw} h^2. 
    more » « less
  2. This file contains a data table representing the average power spectrum, P_n, of Nambu-Goto cosmic strings evolved under numerical gravitational backreaction. The power spectra and the methods used to produce them are reported on in "Numerical gravitational backreaction on cosmic string loops from simulation" [to appear], by the same authors as this dataset. See Fig. 5 of that paper for a visualization. The file is organized in three columns: The fraction of evaporation, chi. The range is from 0.0 to 0.7 in steps of 0.1. The mode number, n. The range is from 2^0 to 2^39 in multiplicative steps of 2. The logarithmically binned elements of the power spectrum, nP_n. Bin edges are 2^i to 2^(i+1)-1 for i from 0 to 39. 
    more » « less