skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2413597

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In high-performance computing (HPC), modern supercomputers typically provide exclusive computing resources to user applications. Nevertheless, the interconnect network is a shared resource for both inter-node communication and across-node I/O access, among co-running workloads, leading to inevitable network interference. In this study, we develop MFNetSim, a multi-fidelity modeling framework that enables simulation of multi-traffic simultaneously over the interconnect network, including inter-process communication and I/O traffic. By combining different levels of abstraction, MFNetSim can efficiently co-model the communication and I/O traffic occurring on HPC systems equipped with flash-based storage. We conduct simulation studies of hybrid workloads composed of traditional HPC applications and emerging ML applications on a 1,056-node Dragonfly system with various configurations. Our analysis provides various observations regarding how network interference affects communication and I/O traffic. 
    more » « less
    Free, publicly-accessible full text available September 12, 2026
  2. Free, publicly-accessible full text available June 22, 2026
  3. Free, publicly-accessible full text available June 22, 2026
  4. Free, publicly-accessible full text available May 19, 2026
  5. Dragonfly is an indispensable interconnect topology for exascale high-performance computing (HPC) systems. To link tens of thousands of compute nodes at a reasonable cost, Dragonfly shares network resources with the entire system such that network bandwidth is not exclusive to any single application. Since HPC systems are usually shared among multiple co-running applications at the same time, network competition between co-existing workloads is inevitable. This network contention manifests as workload interference, in which a job’s network communication can be severely delayed by other jobs. This study presents a comprehensive examination of leveraging intelligent routing and flexible job placement to mitigate workload interference on Dragonfly systems. Specifically, we leverage the parallel discrete event simulation toolkit, the Structural Simulation Toolkit (SST), to investigate workload interference on Dragonfly with three contributions. We first present Q-adaptive routing, a multi-agent reinforcement learning routing scheme, and a flexible job placement strategy that, together, can mitigate workload interference based on workload communication characteristics. Next, we enhance SST with Q-adaptive routing and develop an automatic module that serves as the bridge between the SST and HPC job scheduler for automatic simulation configuration and automated simulation launching. Finally, we extensively examine workload interference under various job placement and routing configurations. 
    more » « less
    Free, publicly-accessible full text available April 30, 2026