Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Accurate detection of skin lesions through computer-aided diagnosis has emerged as a critical advancement in dermatology, addressing the inefficiencies and errors inherent in manual visual analysis. Despite the promise of automated diagnostic approaches, challenges such as image size variability, hair artifacts, color inconsistencies, ruler markers, low contrast, lesion dimension differences, and gel bubbles must be overcome. Researchers have made significant strides in binary classification problems, particularly in distinguishing melanocytic lesions from normal skin conditions. Leveraging the “MNIST HAM10000” dataset from the International Skin Image Collaboration, this study integrates Scale-Invariant Feature Transform (SIFT) features with a custom convolutional neural network model called LesionNet. The experimental results reveal the model's robustness, achieving an impressive accuracy of 99.28%. This high accuracy underscores the effectiveness of combining feature extraction techniques with advanced neural network models in enhancing the precision of skin lesion detection.more » « less
-
Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by notable challenges in cognitive function, understanding language, recognizing objects, interacting with others, and communicating effectively. Its origins are mainly genetic, and identifying it early and intervening promptly can reduce the necessity for extensive medical treatments and lengthy diagnostic procedures for those impacted by ASD. This research is designed with two types of experimentation for ASD analysis. In the first set of experiments, authors utilized three feature engineering techniques (Chi-square, backward feature elimination, and PCA) with multiple machine learning models for autism presence prediction in toddlers. The proposed XGBoost 2.0 obtained 99% accuracy, F1 score, and recall with 98% precision with chi-square significant features. In the second scenario, main focus shifts to identifying tailored educational methods for children with ASD through the assessment of their behavioral, verbal, and physical responses. Again, the proposed approach performs well with 99% accuracy, F1 score, recall, and precision. In this research, cross-validation technique is also implemented to check the stability of the proposed model along with the comparison of previously published research works to show the significance of the proposed model. This study aims to develop personalized educational strategies for individuals with ASD using machine learning techniques to meet their specific needs better.more » « less
-
In this paper, fractal space–time, the Hubble horizon and the energy–momentum tensor are examined in relation to the FLRW metric. It offers a Fractal Friedman equation along with its answer. Also included is the scale factor, which includes fractal structures for closed, flat and open universes. They offer fresh insights into the behavior and evolution of the universe through detailed plots that vividly illustrate their potential cosmological implications.more » « less
-
Background and Objective: Higuchi’s method of determining fractal dimension (HFD) occupies a valuable place in the study of a wide variety of physical signals. In comparison to other methods, it provides more rapid, accurate estimations for the entire range of possible fractal dimensions. However, a major difficulty in using the method is the correct choice of tuning parameter (kmax) to compute the most accurate results. In the past researchers have used various ad hoc methods to determine the appropriate kmax choice for their particular data. We provide a more objective method of determining, a priori, the best value for the tuning parameter, given a particular length data set. Methods: We create numerous simulations of fractional Brownian motion to perform Monte Carlo simulations of the distribution of the calculated HFD. Results: Experimental results show that HFD depends not only on kmax but also on the length of the time series, which enable derivation of an expression to find the appropriate kmax for an input time series of unknown fractal dimension. Conclusion: The Higuchi method should not be used indiscriminately without reference to the type of data whose fractal dimension is examined. Monte Carlo simulations with different fractional Brownian motions increases the confidence of evaluation results.more » « less
An official website of the United States government
