Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Distributed clause-sharing SAT solvers can solve challenging problems hundreds of times faster than sequential SAT solvers by sharing derived information among multiple sequential solvers. Unlike sequential solvers, however, distributed solvers have not been able to produce proofs of unsatisfiability in a scalable manner, which limits their use in critical applications. In this work, we present a method to produce unsatisfiability proofs for distributed SAT solvers by combining the partial proofs produced by each sequential solver into a single, linear proof. We first describe a simple sequential algorithm and then present a fully distributed algorithm for proof composition, which is substantially more scalable and general than prior works. Our empirical evaluation with over 1500 solver threads shows that our distributed approach allows proof composition and checking within around 3x its own (highly competitive) solving time.more » « lessFree, publicly-accessible full text available June 1, 2026
-
The effectiveness of satisfiability solvers strongly depends on the quality of the encoding of a given problem into conjunctive normal form. Cardinality constraints are prevalent in numerous problems, prompting the development and study of various types of encoding. We present a novel approach to optimizing cardinality constraint encodings by exploring the impact of literal orderings within the constraints. By strategically placing related literals nearby each other, the encoding generates auxiliary variables in a hierarchical structure, enabling the solver to reason more abstractly about groups of related literals. Unlike conventional metrics such as formula size or propagation strength, our method leverages structural properties of the formula to redefine the roles of auxiliary variables to enhance the solver's learning capabilities. The experimental evaluation on benchmarks from the maximum satisfiability competition demonstrates that literal orderings can be more influential than the choice of the encoding type. Our literal ordering technique improves solver performance across various encoding techniques, underscoring the robustness of our approach.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Berg, Jeremias; Nordström, Jakob (Ed.)Satisfiability solvers have been instrumental in tackling hard problems, including mathematical challenges that require years of computation. A key obstacle in efficiently solving such problems lies in effectively partitioning them into many, frequently millions of subproblems. Existing automated partitioning techniques, primarily based on lookahead methods, perform well on some instances but fail to generate effective partitions for many others. This paper introduces a powerful partitioning approach that leverages prefixes of proofs derived from conflict-driven clause-learning solvers. This method enables non-experts to harness the power of massively parallel SAT solving for their problems. We also propose a semantically-driven partitioning technique tailored for problems with large cardinality constraints, which frequently arise in optimization tasks. We evaluate our methods on diverse benchmarks, including combinatorial problems and formulas from SAT and MaxSAT competitions. Our results demonstrate that these techniques outperform existing partitioning strategies in many cases, offering improved scalability and efficiency.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Berg, Jeremias; Nordström, Jakob (Ed.)We present a lightweight reencoding technique that augments propositional formulas containing implicit or explicit exactly-one constraints with auxiliary variables derived from the order encoding. Our approach is based on the observation that many formulas contain clauses where each literal appears only in that clause, and that these unique literal clauses can be replaced by the corresponding sequential counter encoding of exactly-one constraints, which introduces the same variables as the order encoding. We implemented the reencoding in the state-of-the-art SAT solver CaDiCaL with support for proof logging and solution reconstruction. Experiments on SAT Competition benchmarks demonstrate that our technique enables solving dozens of additional formulas. We found that shuffling a formula before reencoding harms performance. To mitigate this issue, we introduce a method that sorts literals within clauses based on the formula structure before applying our reencoding. The same technique also predicts whether reencoding is likely to yield improvements.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
