skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2416314

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Plants are diverse, but investigating their ecology and evolution in nature across geographic and temporal scales to predict how species will respond to global change is challenging. With their geographic and temporal breadth, herbarium data provide physical evidence of the existence of a species in a place and time. The remarkable size of herbarium collections along with growing digitization efforts around the world and the possibility of extracting functional traits and geographic data from preserved plant specimens makes them invaluable resources for advancing our understanding of changing species distributions over time, functional biogeography, and conserving plant communities. Here, I synthesize core aspects of plant biogeography that can be gleaned from herbaria along changing distributions, attributes (functional biogeography), and conservation biogeography across the globe. I advocate for a collaborative, multisite, and multispecies research to harness the full potential of these collections while addressing the inherent challenges of using herbarium data for biogeography and macroecological investigations. Ultimately, these data present untapped resources and opportunities to enable predictions of plant species' responses to global change and inform effective conservation planning. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract The plants of the circumpolar Arctic occupy a dynamic system that has been shaped by glacial cycles and climate change on evolutionary timescales. Yet rapid climatic change can compromise the floristic diversity of the tundra, and the ecological and evolutionary changes in the Arctic from anthropogenic forces remain understudied. In this review, we synthesize knowledge of Arctic floral biodiversity across the entirety of the region within the context of its climatic history. We present critical gaps and challenges in modeling and documenting the consequences of anthropogenic changes for Arctic flora, informed by data from the Late Quaternary (~20 ka). We found that previous forecasts of Arctic plant responses to climate change indicate widespread reductions in habitable area with increasing shrub growth and abundance as a function of annual temperature increase. Such shifts in the distribution and composition of extant Arctic flora will likely increase with global climate through changes to the carbon cycle, necessitating a unified global effort in conserving these plants. More data and research on the continuity of tundra communities are needed to firmly assess the risk climate change poses to the Arctic. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. The partitioning of global biodiversity into biogeographic regions is critical for understanding the impacts of global-scale ecological and evolutionary processes on species assemblages as well as prioritizing areas for conservation. However, the lack of globally comprehensive data on species distributions precludes fine-scale estimation of biogeographical regionalization for numerous taxa of ecological, economic and conservation interest. Using a recently published phylogeny and novel curated native range maps for over 10 000 species of butterflies around the world, we delineated biogeographic regions for the world’s butterflies using phylogenetic dissimilarity. We uncovered 19 distinct phylogenetically delimited regions (phyloregions) nested within 6 realms. Regional boundaries were predicted by spatial turnover in modern-day temperature and precipitation seasonality, but historical climate change also left a pronounced fingerprint on deeper- (realm-) level boundaries. We use a culturally and ecologically important group of insects to expand our understanding of how historical and contemporary factors drive the distribution of organismal lineages on the Earth. As insects and global biodiversity more generally face unprecedented challenges from anthropogenic factors, our research provides the groundwork for prioritizing regions and taxa for conservation, especially with the goal of preserving the legacies of our biosphere’s evolutionary history. This article is part of the discussion meeting issue ‘Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future’. 
    more » « less
    Free, publicly-accessible full text available January 9, 2026