skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2418199

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Theater-based design methods are seeing increased use in social robotics, as embodied roleplay is an ideal method for designing embodied interactions. Yet theater-based design methods are often cast as simply one possible tool; there has been little consideration of the importance of specific improvisational skills for theater-based design; and there has been little consideration of how to train students in theater-based design methods. We argue that improvisation is not just one possible tool of social robot design, but is instead central to social robotics. Leveraging recent theoretical work on Applied Improvisation, we show how improvisational skills represent (1) a set of key capabilities needed for any socially interactive robot, (2) a set of learning objectives for training engineers in social robot design, and (3) a set of methodologies for training those engineers to engage in theater-based design methods. Accordingly, we argue for a reconceptualization of Social Robotics as an Applied Improvisation project; we present, as a speculative pedagogical artifact, a sample syllabus for an envisioned Applied Improvisation driven Social Robotics course that might give students the technical and improvisational skills necessary to be effective robot designers; and we present a case study in which Applied Improvisation methods were simultaneously used (a) by instructors, to rapidly scaffold engineering students’ improvisational skills and (b) by those students, to engage in more effective human-robot interaction design. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026