skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2420360

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IntroductionThroughout domestication, crop plants have gone through strong genetic bottlenecks, dramatically reducing the genetic diversity in today’s available germplasm. This has also reduced the diversity in traits necessary for breeders to develop improved varieties. Many strategies have been developed to improve both genetic and trait diversity in crops, from backcrossing with wild relatives, to chemical/radiation mutagenesis, to genetic engineering. However, even with recent advances in genetic engineering we still face the rate limiting step of identifying which genes and mutations we should target to generate diversity in specific traits. MethodsHere, we apply a comparative evolutionary approach, pairing phylogenetic and expression analyses to identify potential candidate genes for diversifying soybean (Glycine max) canopy cover development via the nuclear auxin signaling gene families, while minimizing pleiotropic effects in other tissues. In soybean, rapid canopy cover development is correlated with yield and also suppresses weeds in organic cultivation. Results and discussionWe identified genes most specifically expressed during early canopy development from the TIR1/AFB auxin receptor, Aux/IAA auxin co-receptor, and ARF auxin response factor gene families in soybean, using principal component analysis. We defined Arabidopsis thaliana and model legume species orthologs for each soybean gene in these families allowing us to speculate potential soybean phenotypes based on well-characterized mutants in these model species. In future work, we aim to connect genetic and functional diversity in these candidate genes with phenotypic diversity in planta allowing for improvements in soybean rapid canopy cover, yield, and weed suppression. Further development of this and similar algorithms for defining and quantifying tissue- and phenotype-specificity in gene expression may allow expansion of diversity in valuable phenotypes in important crops. 
    more » « less
  2. Summary The plant community has a strong track record of RNA sequencing technology deployment, which combined with the recent advent of spatial platforms (e.g. 10× genomics) has resulted in an explosion of single‐cell and nuclei datasets that can be positioned in anin situcontext within tissues (e.g. a cell atlas). In the genomics era, application of proteomics technologies in the plant sciences has always trailed behind that of RNA sequencing technologies, largely due in part to upfront cost, ease‐of‐use, and access to expertise. Conversely, the use of early analytical tools for characterizing small molecules (metabolites) from plant systems predates nucleic acid sequencing and proteomics analysis, as the search for plant‐based natural products has played a significant role in improving human health throughout history. As the plant sciences field now aims to fully define cell states, cell‐specific regulatory networks, metabolic asymmetry and phenotypes, the measurement of proteins and metabolites at the single‐cell level will be paramount. As a result of these efforts, the plant community will unlock exciting opportunities to accelerate discovery and drive toward meaningful translational outcomes. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Abstract The Plant Metabolic Network (PMN) is a free online database of plant metabolism available at https://plantcyc.org. The latest release, PMN 16, provides metabolic databases representing >1200 metabolic pathways, 1.3 million enzymes, >8000 metabolites, >10 000 reactions and >15 000 citations for 155 plant and green algal genomes, as well as a pan-plant reference database called PlantCyc. This release contains 29 additional genomes compared with PMN 15, including species listed by the African Orphan Crop Consortium and nonflowering plant species. Furthermore, 52 new enzymes with experimentally supported function information have been included in this release. The single-species databases contain a combination of experimental information from the literature and computationally predicted information obtained through PMN’s database generation pipeline for a single species, while PlantCyc contains only experimental information but for any species within Viridiplantae. PMN is a comprehensive resource for querying, visualizing, analyzing and interpreting omics data with metabolic knowledge. It also serves as a useful and interactive tool for teaching plant metabolism. 
    more » « less
  4. Abstract Cereal grains are an important source of food and feed. To provide comprehensive spatiotemporal information about biological processes in developing seeds of cultivated barley (Hordeum vulgare L. subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from grains 4–32 days after pollination. Weighted gene co-expression network and motif enrichment analyses identified specific groups of genes and transcription factors (TFs) potentially regulating barley seed tissue development. We defined a set of tissue-specific marker genes and families of TFs for functional studies of the pathways controlling barley grain development. Assessing selected groups of chromatin regulators revealed that epigenetic processes are highly dynamic and likely play a major role during barley endosperm development. The repressive H3K27me3 modification is globally reduced in endosperm tissues and at specific genes related to development and storage compounds. Altogether, this atlas uncovers the complexity of developmentally regulated gene expression in developing barley grains. 
    more » « less
  5. Abstract The symbiotic interaction of plants with arbuscular mycorrhizal (AM) fungi is ancient and widespread. Plants provide AM fungi with carbon in exchange for nutrients and water, making this interaction a prime target for crop improvement. However, plant–fungal interactions are restricted to a small subset of root cells, precluding the application of most conventional functional genomic techniques to study the molecular bases of these interactions. Here we used single-nucleus and spatial RNA sequencing to explore bothMedicago truncatulaandRhizophagus irregularistranscriptomes in AM symbiosis at cellular and spatial resolution. Integrated, spatially registered single-cell maps revealed infected and uninfected plant root cell types. We observed that cortex cells exhibit distinct transcriptome profiles during different stages of colonization by AM fungi, indicating dynamic interplay between both organisms during establishment of the cellular interface enabling successful symbiosis. Our study provides insight into a symbiotic relationship of major agricultural and environmental importance and demonstrates a paradigm combining single-cell and spatial transcriptomics for the analysis of complex organismal interactions. 
    more » « less
  6. Abstract Single-cell and single-nucleus RNA-sequencing technologies capture the expression of plant genes at an unprecedented resolution. Therefore, these technologies are gaining traction in plant molecular and developmental biology for elucidating the transcriptional changes across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses, or between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized experimental and analytical procedures to support the acquisition of high-quality data sets are still missing. In this commentary, we discuss common challenges associated with the use of single-cell transcriptomics in plants and propose general guidelines to improve reproducibility, quality, comparability, and interpretation and to make the data readily available to the community in this fast-developing field of research. 
    more » « less
  7. Free, publicly-accessible full text available April 1, 2026
  8. Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs1. To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs. 
    more » « less