skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2420675

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Solar wind drives magnetospheric dynamics through coupling with the geospace system at the magnetopause. While upstream fluctuations correlate with geomagnetic activity, their impact on the magnetopause energy transfer is an open question. In this study, we examine three‐dimensional global magnetospheric simulations using the Geospace configuration of the Space Weather Modeling Framework. We examine the effects of solar wind fluctuations during a substorm event by running the model with four different driving conditions that vary in fluctuation frequency spectrum. We demonstrate that upstream fluctuations intensify the energy exchange at the magnetopause increasing both energy flux into and out of the system. The increased energy input is reflected in ground magnetic indices. Moreover, the fluctuations impact the magnetopause dynamics by regulating the energy exchange between the polar caps and lobes and energy transport within the magnetotail neutral sheet. 
    more » « less