- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Badha, Vajra S (1)
-
Balmuri, Sricharani Rao (1)
-
Gharbi, Mohamed Amine (1)
-
Niepa, Tagbo H. (1)
-
Niepa, Tagbo_H R (1)
-
Noaman, Sena (1)
-
Usman, Huda (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
IntroductionChronic lung infection due to bacterial biofilms is one of the leading causes of mortality in cystic fibrosis (CF) patients. Among many species colonizing the lung airways,Pseudomonas aeruginosaandStaphylococcus aureusare two virulent pathogens involved in mechanically robust biofilms that are difficult to eradicate using airway clearance techniques like lung lavage. To remove such biological materials, glycoside hydrolase-based compounds are commonly employed for targeting and breaking down the biofilm matrix, and subsequently increasing cell susceptibility to antibiotics. Materials and methodsIn this study, we evaluate the effects of N-acetyl cysteine (NAC) and Cysteamine (CYST) in disrupting interfacial bacterial films, targeting different components of the extracellular polymeric substances (EPS). We characterize the mechanics and structural integrity of the interfacial bacterial films using pendant drop elastometry and scanning electron microscopy. Results and discussionOur results show that the film architectures are compromised by treatment with disrupting agents for 6 h, which reduces film elasticity significantly. These effects are profound in the wild type and mucoidP. aeruginosa, compared toS. aureus. We further assess the effects of competition and cooperation betweenS. aureusandP. aeruginosaon the mechanics of composite interfacial films. Films ofS. aureusand wild-typeP. aeruginosacocultures lose mechanical strength while those ofS. aureusand mucoidP. aeruginosaexhibit improved storage modulus. Treatment with NAC and CYST reduces the elastic property of both composite films, owing to the drugs’ ability to disintegrate their EPS matrix. Overall, our results provide new insights into methods for assessing the efficacy of mucolytic agents against interfacial biofilms relevant to cystic fibrosis infection.more » « less
-
Badha, Vajra S; Niepa, Tagbo_H R; Gharbi, Mohamed Amine (, Langmuir)Characterizing the anchoring properties of smectic liquid crystals (LCs) in contact with bacterial solutions is crucial for developing biosensing platforms. In this study, we investigate the anchoring properties of a smectic LC when exposed to Bacillus subtilis and Escherichia coli bacterial suspensions using interfaces with known anchoring properties. By monitoring the optical response of the smectic film, we successfully distinguish different types of bacteria, leveraging the distinct changes in the LC’s response. Through a comprehensive analysis of the interactions between bacterial proteins and the smectic interface, we elucidate the potential underlying mechanisms responsible for these optical changes. Additionally, we introduce the utilization of topological defects, the focal conic domains (FCDs), at the smectic interface as an indicative measure of the bacterial concentration. Our findings contribute to the understanding of bacteria–LC interactions and demonstrate the significant potential of smectic LCs and their defects for biosensing applications, paving the way for advancements in pathogen detection and protein-based sensing.more » « less
An official website of the United States government
