skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2422696

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Silver nanowires (AgNWs) have garnered significant attention in nanotechnology due to their unique mechanical and electrical properties and versatile applications. This review explores the synthesis of AgNWs, with a specific focus on the utilization of millifluidic flow reactors (MFRs) as a promising platform for controlled and efficient production. It begins by elucidating the exceptional characteristics and relevance of AgNWs in various technological domains and then delves into the principles and advantages of MFRs by showcasing their pivotal role in enhancing the precision and scalability of nanowire synthesis. Within this review, an overview of the diverse synthetic methods employed for AgNW production using MFRs is provided. Special attention is given to the intricate parameters and factors influencing synthesis and how MFRs offer superior control over these critical variables. Recent advances in this field are highlighted, revealing innovative strategies and promising developments that have emerged. As with any burgeoning field, challenges are expected, so future directions are explored, offering insights into the current limitations and opportunities for further exploration. In conclusion, this review consolidates the state-of-the-art knowledge in AgNW synthesis and emphasizes the critical role of MFRs in shaping the future of nanomaterial production and nanomanufacturing. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Free, publicly-accessible full text available March 24, 2026