skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2423091

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Characterizing the impact of human actions on terrestrial water fluxes and storages at multi‐basin, continental, and global scales has long been on the agenda of scientists engaged in climate science, hydrology, and water resources systems analysis. This need has resulted in a variety of modeling efforts focused on the representation of water infrastructure operations. Yet, the representation of human‐water interactions in large‐scale hydrological models is still relatively crude, fragmented across models, and often achieved at coarse resolutions (10–100 km) that cannot capture local water management decisions. In this commentary, we argue that the concomitance of four drivers and innovations is poised to change the status quo: “hyper‐resolution” hydrological models (0.1–1 km), multi‐sector modeling, satellite missions able to monitor the outcome of human actions, and machine learning are creating a fertile environment for human‐water research to flourish. We then outline four challenges that chart future research in hydrological modeling: (a) creating hyper‐resolution global data sets of water management practices, (b) improving the characterization of anthropogenic interventions on water quantity, stream temperature, and sediment transport, (c) improving model calibration and diagnostic evaluation, and (d) reducing the computational requirements associated with the successful exploration of these challenges. Overcoming them will require addressing modeling, computational, and data development needs that cut across the hydrology community, thereby requiring a major communal effort. 
    more » « less
  2. InfeRes is a Python package designed for the automated extraction of reservoir dynamics—including time series of water surface area, water level, and storage volume—by leveraging satellite imagery from Google Earth Engine (Landsat series, Sentinel-2) and high-resolution digital elevation models (30 m DEMs). 
    more » « less