Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Herbivores can be drivers of ecosystem change by triggering and reinforcing vegetation transitions. Such processes may be prevalent in drylands with low productivity where herbivore abundances are linked to climate‐driven resource pulses. In the Chihuahuan Desert, ecosystems are being transformed from black grama (Bouteloua eriopoda) grasslands to honey mesquite (Neltuma[formerlyProsopis]glandulosa) shrublands. Domestic livestock, exotic African oryx (Oryx gazella), and native rodents and lagomorphs have all been implicated as drivers of these transitions through multiple mechanisms affecting different plant life stages. Across shrub encroachment gradients, we paired a long‐term (21 years) herbivore exclusion experiment focused on established perennial grasses with field trials measuring herbivory risk for perennial grass seedlings. We evaluated the roles of cattle, oryx, and native herbivores in reducing grass cover, and tested whether herbivore effects on grass cover and seedling mortality varied among ecosystem states (grassland, ecotone, and shrubland). Cattle and African oryx did not contribute strongly to vegetation dynamics. However, long‐term exclusion of rodents and lagomorphs led to two‐to‐threefold increases in perennial grass cover compared to control plots (with open access to all herbivores) in shrub‐encroached states where mesquite shrubs provided these herbivores with cover from predators. Likewise, herbivory of perennial grass seedlings was highest in the shrub‐encroached states and was driven by rodents. Our results indicate that native rodents and lagomorphs exert strong control over perennial grass dynamics, creating positive feedbacks mediated by changes in habitat structure that can reinforce grassland–shrubland transitions in drylands.more » « less
-
ABSTRACT Though limiting resources differ among systems, water is limiting in most arid and many mesic systems, potentially allowing for direct measurement of competition by measurement of water uptake. Sapflow measurements provide a direct measure of water movement through plant stems, but, to our knowledge, sapflow has never been used to study density dependence and competition at large (regional or global) scales. Here, we examine a global database of sapflow measurements, the SapFluxNet database, for signs of density‐dependent competition for water. We find that plant‐level water uptake decreases with increasing competition from neighbours (specifically, neighbourhood basal area). Further analysis demonstrates that global‐scale variability in annual sapflow can be largely explained (R2 = 0.522) by the combination of average vapour pressure and neighbourhood summed basal area. This analysis provides a rare quantification of plant competition for a limiting resource inferred directly via measurements of resource acquisition (i.e., sapflow).more » « less
-
Abstract Islands of fertility, patches of locally enhanced soil conditions, play a key role in increasing productivity in dryland regions. The fertile island effect (FIE) influences a range of variables including nutrient availability, soil moisture and microbial activity. While most examinations of the FIE focus on islands created by perennial plants at local scales, the effect may vary across spatial scales and under cover types including shrubs, grasses and biological soil crusts (biocrusts). This study explored differences in the FIE between soil depths across landforms and patch types for biogeochemical factors (nutrient availability) and biotic properties (microbial community structure, extracellular enzymatic activity). The FIE differed across landforms and soil depths, suggesting that soil geomorphology may play a major role in predicting soil fertility. Additionally, the FIE of enzymatic activity and available nutrients varied by patch type consistently across landforms, suggesting patch-scale processes influencing nutrient availability and acquisition are independent of landscape-scale differences. We show that biocrusts can have an FIE similar to that of shrubs and grasses, an underexplored control of variability and productivity in drylands. These findings necessitate further work to improve our understanding of how ecosystem processes vary across scales to influence patterns of productivity and soil fertility.more » « less
-
Abstract Vegetation change in drylands can influence wind erosion and sand and dust storms (SDS) with far‐reaching consequences for Earth systems and society. Although vegetation is recognized as an important control on wind erosion and SDS, the interactions are not well described at the landscape level or in the context of dryland ecosystem change. The transition of sites from one ecological state to another (e.g., grassland to shrubland) is typically associated with changes in the composition, cover, and structure of vegetation, which influence drag partitioning and wind shear velocities that drive aeolian sediment transport. Here, we quantify the magnitude and direction of aeolian sediment transport responses to ecological state change in the northern Chihuahuan Desert and identify thresholds associated with state transitions. Our results show aeolian sediment mass flux (Q) increased from ∼1 to 10 g m−1 d−1in historical grassland with scattered shrubs to ∼10–100 g m−1 d−1following shrub invasion and decline in perennial grass cover to ∼100–10,000 g m−1 d−1in shrubland following complete grass loss. The magnitude shifts were associated with critical perennial grass cover thresholds governing nonlinear increases inQacross ecological state transitions. Grass recovery in shrubland reducedQto rates similar to those in historical grasslands—a multiple order of magnitude reduction. Our results show that crossing degradation and restoration thresholds between alternative ecological states can have a profound effect on the magnitude and spatiotemporal variability of aeolian sediment transport and primacy in determining patterns of wind erosion and dust emissions in vegetated drylands.more » « less
-
As droughts become longer and more intense, impacts on terrestrial primary productivity are expected to increase progressively. Yet, some ecosystems appear to acclimate to multiyear drought, with constant or diminishing reductions in productivity as drought duration increases. We quantified the combined effects of drought duration and intensity on aboveground productivity in 74 grasslands and shrublands distributed globally. Ecosystem acclimation with multiyear drought was observed overall, except when droughts were extreme (i.e., ≤1-in-100-year likelihood of occurrence). Productivity losses after four consecutive years of extreme drought increased by ~2.5-fold compared with those of the first year. These results portend a foundational shift in ecosystem behavior if drought duration and intensity increase, from maintenance of reduced functioning over time to progressive and profound losses of productivity when droughts are extreme.more » « less
-
Coccidioidomycosis (Valley fever), caused by Coccidioides spp., is a fungal infection endemic to semi-arid regions of the Americas. Despite 80 years of disease recognition in New Mexico, there is limited disease awareness. We incorporated clinical, epidemiological, and ecological datasets to summarize the knowledge of Valley fever in New Mexico. We analyzed 1541 human cases from 2006 to 2023. On average, 86 cases were reported each year (4.1 cases per 100,000 population per year). The highest levels of incidence were in southwestern New Mexico. American Indian or Alaska Natives in New Mexico had a 1.9 times higher incidence rate of coccidioidomycosis than White people, and among age groups, older populations in New Mexico had the highest incidence rates. We analyzed 300 soil samples near Las Cruces, New Mexico, for the presence of Coccidioides and reported the first known positive soil samples collected from the state, the majority of which were from grassland-dominated sites and from animal burrows. Sequence analyses in clinical specimens, wild animals, and soil samples confirmed that Coccidioides posadasii is the main causative species of coccidioidomycosis in New Mexico. Environmental surveillance validated that locally acquired infections could occur in, but are not limited to, Catron, Doña Ana, Sierra, and Socorro Counties.more » « less
An official website of the United States government

Full Text Available