- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Al_Keyyam, Ibrahim (1)
-
Hua, Yu (1)
-
Wang, Xinwei (1)
-
Xie, Yangsu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Solving transient energy transport is crucial for accurately predicting the behavior of materials and devices during thermal cycling, pulsed heating, and transient operational states where heat generation and dissipation rates vary over time. Traditional methods, like the finite difference and element methods, discretize space and time and update temperature values at each grid point iteratively over time steps. Its straightforward implementation makes it popular for solving heat transfer problems. However, when high temporal and spatial resolutions or prolonged heating durations are required, the computational demand rises significantly, leading to significantly greater resource consumption. To address this, in this work we develop a new method termed Complex-modeling with Fourier Transform (CFT) that enables rapid and efficient simulations of transient energy transport problems. The CFT method decomposes the periodical heating problem into a complex-temperature energy transport problem with a single harmonic heat source. 1D and 3D transient heat conduction problems (conjugated with hot carrier transfer) are solved using the CFT method to demonstrate its effectiveness. The CFT method produces similar or higher accuracy results compared with the finite difference method, while the computational speed is increased by more than two orders of magnitude. We also developed a new method termed Complex-modeling with Fourier and Heaviside Transforms (CFHT) that can solve any transient energy transport problems with orders of magnitude speed increase. The CFT and CFHT methods developed in this work are applicable to linear problems that could involve mechanical, thermal, optical, and electrical responses.more » « less
An official website of the United States government
