skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2426470

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available June 15, 2026
  3. Millimeter-wave (mmWave) sensing has emerged as a promising technology for non-contact health monitoring, offering high spatial resolution, material sensitivity, and integration potential with wireless platforms. While prior work has focused on specific applications or signal processing methods, a unified understanding of how mmWave signals map to clinically relevant biomarkers remains lacking. This survey presents a full-stack review of mmWave-based medical sensing systems, encompassing signal acquisition, physical feature extraction, modeling strategies, and potential medical and healthcare uses. We introduce a taxonomy that decouples low-level mmWave signal features—such as motion, material property, and structure—from high-level biomedical biomarkers, including respiration pattern, heart rate, tissue hydration, and gait. We then classify and contrast the modeling approaches—ranging from physics-driven analytical models to machine learning techniques—that enable this mapping. Furthermore, we analyze representative studies across vital signs monitoring, cardiovascular assessment, wound evaluation, and neuro-motor disorders. By bridging wireless sensing and medical interpretation, this work offers a structured reference for designing next-generation mmWave health monitoring systems. We conclude by discussing open challenges, including model interpretability, clinical validation, and multimodal integration. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Free, publicly-accessible full text available May 6, 2026
  5. Free, publicly-accessible full text available May 6, 2026
  6. Free, publicly-accessible full text available May 6, 2026
  7. Free, publicly-accessible full text available May 6, 2026
  8. Free, publicly-accessible full text available May 6, 2026
  9. Free, publicly-accessible full text available December 4, 2025
  10. Free, publicly-accessible full text available December 4, 2025