skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2427099

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Garner, Ethan (Ed.)
    For microbial cells, an appropriate response to changing environmental conditions is critical for viability. Transcription regulatory proteins, or transcription factors (TF) sense environmental signals to change gene expression. However, it remains unclear how TFs and their corresponding gene regulatory networks are selected over evolutionary time scales. The function of TFs and how they evolve are particularly understudied in archaeal organisms. Here, we identified, characterized, and compared the function of the RosR TF across three related hypersaline-adapted archaeal model species. RosR was previously characterized as a global regulator of gene expression during oxidative stress in the species Halobacterium salinarum ( hsRosR). Here, we use functional genomics and quantitative phenotyping to demonstrate that, despite strong sequence conservation of RosR across species, its function diverges substantially. Surprisingly, RosR in Haloferax volcanii ( hvRosR) and Haloferax mediterranei ( hmRosR) regulates genes whose products function in motility and the membrane, leading to significant defects in motility when RosR is deleted. Given weak conservation and degeneration in cis-regulatory sequences recognized by the RosR TF across species, we hypothesize that the RosR regulatory network is readily rewired during evolution across related species of archaea. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026