skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2427185

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2027
  2. Abstract Many ecosystems receive resource subsidies that affect productivity and food webs. Ecosystem subsidies vary in quantity, quality, and timing, and effects are often mediated by environmental factors, including temperature. Deposition of periodical cicada carcasses into ponds represents a large, high‐quality, infrequent subsidy. Cicadas emerge in massive numbers every 17 yr, and many individuals die and fall into aquatic ecosystems. As climate warms, future cicada subsidies may enter warmer ponds. We conducted a mesocosm experiment with a factorial design to examine the effects of cicada carcasses and elevated (~ 2.6°C) temperature on the growth and development of tadpoles of a common frog,Hyla chrysoscelis. Carcasses and warming each increased frog size at metamorphosis and shortened the time to metamorphosis, and the effects of cicadas and warming were additive for both traits. Mass at metamorphosis was largest and time to metamorphosis shortest with carcass addition and warmed temperature, whereas mass at metamorphosis was smallest and time to metamorphosis longest under ambient temperature without carcasses. Carcasses greatly increased algae biomass (periphyton and phytoplankton), possibly accounting for faster development and larger size of frogs. Warming did not increase standing algal biomass, but increased primary production, possibly increasing food supply for, and growth rates of, tadpoles. Our results show that a large, high‐quality, infrequent subsidy strongly affects pond amphibians, and effects are additively enhanced by warming. Because adult frogs migrate to land, live for several years, and return to their natal pond to breed, a cicada carcass subsidy may mediate reciprocal resource fluxes between land and ponds for several years. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  3. Beisner, Beatrix E (Ed.)
    Abstract Freshwater ecosystems are increasingly at risk of experiencing toxin-producing cyanobacterial blooms during the winter due to anthropogenic nutrient loading and climate change. However, understanding how increased light, temperature and nutrient levels impact cyanotoxin production during the winter is limited, as most research has historically focused on blooms during the summer and fall. We conducted 2 × 2 × 2 incubation experiments in February and March to test the individual and interactive effects of light intensity (50 and 150 μmol m−2 s−1 PAR), elevated temperature (+3°C), and nitrogen and phosphorus enrichment on microcystin concentrations in a Planktothrix agardhii-dominated community sampled from Grand Lake Saint Mary’s, a hypereutrophic Ohio reservoir. Microcystin concentration significantly increased with elevated temperature in both months. In February, low light also promoted higher microcystin concentrations, particularly when combined with elevated temperature and nutrient enrichment. In March, nutrient enrichment had individual and interactive effects with temperature that caused higher microcystin concentrations. These results demonstrate that toxin-producing cyanobacteria are active in winter and that climate-driven changes in environmental conditions can interactively increase total toxin concentrations in the water column, even in the non-growing season. 
    more » « less
    Free, publicly-accessible full text available October 7, 2026
  4. ABSTRACT Although nitrogen and phosphorus deficiency of algal blooms have been the focus of substantial attention, organic nutrients can limit algal growth in aquatic systems. Growing evidence indicates thiamine (vitamin B1) can influence the community of primary producers in marine systems, but comparatively little is known about the effect of thiamine on freshwater algal productivity.We conducted 106 nutrient deficiency experiments with water from 39 Ohio lakes of varying trophic status during the growing seasons (April–October) of 2008–2009. Specifically, we tested the response of phytoplankton biomass (as chlorophylla, chl‐a) relative to controls to added nitrogen (N), phosphorus (P), thiamine (Th), or combinations of N + P and N + P + Th. Next, we compared the chl‐agrowth response of treatment/control to published thresholds based on frequentist approaches and compared the conclusions with Bayesian model results that focused on probability of a response.Although N + P addition was consistently associated with the largest chl‐aresponse, we found evidence of a thiamine influence on phytoplankton growth in some experiments. The Bayesian approach suggested thiamine may become more limiting as the growing season progresses. By late in the growing season, there was an 85% probability of a positive algal growth response to thiamine addition.Understanding the role of thiamine or other overlooked nutrients is not likely to alter the prevailing understanding of nutrient deficiency in freshwater ecosystems. However, we present evidence that freshwater phytoplankton may experience thiamine deficiency and suggest limnologists consider thiamine when exploring resource deficiencies. 
    more » « less
  5. Hansson, Lars-Anders (Ed.)
    Abstract Cyanobacteria harmful algal blooms (cyanoHABs) are a complex threat to water quality. Most research to date on the drivers of cyanoHABs focuses on environmental factors in the typical “growing season” despite evidence that cyanobacteria overwintering dynamics may have substantial effects on cyanobacteria seasonal succession and bloom formation. Additionally, the growing season is now beginning earlier and ending later in many parts of the world. Here, we examine the impacts of light, temperature and nutrients on the magnitude and timing of cyanobacteria recruitment from sediments in two hypereutrophic reservoirs in the Midwestern USA in the early spring season via microcosm recruitment experiments. We observed that recruitment was greatest at the first sampling point (Day 3), then declined throughout the rest of the 18-day experiment for both reservoirs. Further, increasing light and temperature significantly promoted recruitment in both systems, while nutrient additions were only a significant driver of recruitment in one lake. The recruited cyanobacteria community identity was similar in both lakes, with Planktothrix, Raphidiopsis and Pseudanabaena being most abundant. This study highlights the complex, interactive effects of environmental variables on cyanobacteria recruitment. 
    more » « less
    Free, publicly-accessible full text available August 3, 2026
  6. Abstract Long-term declines in lake hypolimnetic dissolved oxygen (DO) have been attributed to eutrophication, reduced water clarity, or rising temperatures. DO dynamics in human-made reservoirs may also be influenced by their distinct characteristics (for example, hydrology) and by the high levels of watershed inputs (suspended sediments, nutrients) these systems may receive, particularly in agricultural landscapes. We used a 31 year dataset in a reservoir that has experienced agricultural land management change to ask: (1) What are the long-term trends in two hypolimnetic DO metrics (DO concentration in early summer and summer anoxic factor), and (2) what are the key drivers of these metrics?. We used linear regressions to assess temporal trends, and exhaustive variable selection to identify drivers. Potential drivers included metrics of watershed discharge, temperature, stability, and potential productivity (chlorophyll, nonvolatile suspended sediments; NVSS). We found that deepwater early summer DO concentrations decreased, but there was no temporal trend for anoxic factor. Deepwater DO was best predicted by surface temperature, with warming temperatures related to lower DO. However, the top five models performed similarly, and all included a temperature or stratification metric. Higher stability was related to lower DO. For anoxic factor, the top two models performed similarly with stability, surface temperature, and NVSS identified. Anoxic factor increased with higher surface temperature, lower NVSS, and higher stability. Our findings suggest that DO dynamics were linked to previously recognized drivers (for example, temperature), as well as NVSS, a driver that is rarely acknowledged and may reflect land use and management within the watershed. 
    more » « less
  7. Abstract Agricultural land cover in the U.S. Midwest is a major source of nutrient pollution that has led to impairment of stream water quality. This study examines the impact of a forested state park on nutrient concentrations within an agriculturally dominated watershed. Water samples were collected over a 2‐year study period from eight stream sampling sites along four creeks and processed for total nitrogen (TN), nitrate (), total phosphorus (TP), and orthophosphate (). Hydrology, channel morphology, and remotely sensed land cover and vegetation data were also collected and analyzed within the study area. Results indicate that water quality responses to a forested state park vary between TN, , TP, and , and water quality variables are uniquely influenced by watershed and stream characteristics. The greatest water quality benefits most frequently occurred within the two smallest study streams with the greatest residence times and proportion of watershed areas within the forested state park. Overall, the greatest improvements to water quality occurred during periods of low stream discharge and when riparian vegetation was greenest. The results of this study suggest that conservation of forested areas within agriculturally dominated watersheds can provide water quality improvements in the U.S. Midwest. Targeting watersheds that drain small streams with long residence times for conservation may be most beneficial to improving water quality. 
    more » « less
  8. Abstract Elevated nutrient and suspended sediment concentrations often result in negative environmental impacts within freshwater environments. Studies that directly compare suspended sediment and bioavailable nutrients between predominantly agricultural and predominantly urban watersheds during baseflow conditions are largely lacking. The purpose of this study was to determine the impacts of land cover, stream discharge, and wastewater treatment plant (WWTP) discharge on nutrient and sediment concentrations, across a large land cover gradient in Southwest Ohio streams. Weekly baseflow samples were collected from eight streams over 1 year from November, 2016 through November, 2017. Total suspended sediment, nitrate, and phosphate concentrations were measured. Results indicate that agricultural land cover and WWTPs increase nitrate and phosphate concentrations in the study area. Total suspended sediment and nitrate concentrations increased with discharge, and discharge was a relatively weak predictor of phosphate concentrations. Seasonal water quality trends varied by parameter and land use also had unique impacts on seasonal water quality trends. Results suggest that to improve water quality in the study area, efforts should focus on improving WWTP effluent treatment and agricultural land management. 
    more » « less
  9. Abstract Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. In lakes, pelagic gross primary productivity (GPP) is strongly controlled by inputs of nutrients and dissolved organic matter. Although past studies have developed process models of this nutrient‐color paradigm (NCP), broad empirical tests of these models are scarce. We used data from 58 globally distributed, mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. The model includes three state variables–dissolved phosphorus, terrestrial dissolved organic carbon (DOC), and phytoplankton biomass–and generates realistic predictions for equilibrium rates of pelagic GPP. We calibrated our model using a Bayesian data assimilation technique on a subset of lakes where DOC and total phosphorus (TP) loads were known. We then asked how well the calibrated model performed with a larger set of lakes. Revised parameter estimates from the updated model aligned well with existing literature values. Observed GPP varied nonlinearly with both inflow DOC and TP concentrations in a manner consistent with increasing light limitation as DOC inputs increased and decreasing nutrient limitation as TP inputs increased. Furthermore, across these diverse lake ecosystems, model predictions of GPP were highly correlated with observed values derived from high‐frequency sensor data. The GPP predictions using the updated parameters improved upon previous estimates, expanding the utility of a process model with simplified assumptions for water column mixing. Our analysis provides a model structure that may be broadly useful for understanding current and future patterns in lake primary production. 
    more » « less