Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Specific ions can be intercalated into functional materials using the electrolyte gating technique, which has been widely used to regulate channel conductance in transistors and develop low‐power neuromorphic devices. However, in these devices, fundamental exploration of ion intercalation‐induced structural phase transitions remains largely overlooked and rarely explored. Here, the lithium‐based electrolyte gating technique is used to probe the collective interactions between ions, lattices, and electrons in a van der Waals ferroelectric semiconductor α‐In2Se3. Using a polymer electrolyte as the lithium‐ion reservoir and α‐In2Se3as the channel material, the intercalated lithium concentration via a gate electric field is modulated. This manipulation drives a phase transition in α‐In2Se3from a ferroelectric semiconductor to a dirty metal and finally to a metal, accompanied by a structural transformation. Concurrently, with enhanced intercalation, the ferroelectric hysteresis window progressively narrows and eventually disappears, indicating the evolution from switchable to non‐switchable polarization. This study represents a promising platform for the artificial construction of correlated material systems, enabling a systematic investigation into the interaction of ferroelectricity and electronic conduction using ion intercalation.more » « lessFree, publicly-accessible full text available December 12, 2026
-
Abstract Magnetic high entropy alloys (HEAs) consisting of 3dtransition metals offer an exciting platform to explore novel magnetic phases as they often house competing exchange interactions in combination with random site disorders. In this work, a sensitive and tunable magnetic order is demonstrated in sputtered single‐layer FeCoNiMnAlxfilms, as a function of non‐magnetic Al addition, along with an unexpected exchange bias effect. Thin films of 50 nm FeCoNiMn exhibit a face‐centered‐cubic (fcc) phase, reentrant spin glass (SG) transition near 100 K, and a large exchange bias of over 500 Oe after field‐cooling to 5 K. The exchange bias is increased to 930 Oe through a small addition of 5 at.% Al. Further Al addition to 12 at.% results in a body‐centered‐cubic (bcc) phase, coinciding with a large increase in the saturation magnetization, decrease of exchange bias to 50 Oe, and suppression of SG behavior. The change in magnetic order across the Al‐induced structural transformation is mediated by the switching of Mn ground state from AF to FM, which is supported by first‐principles calculations and experimentally confirmed via X‐ray magnetic circular dichroism. These results open up new HEA strategies for explorations of novel magnetic phases.more » « lessFree, publicly-accessible full text available April 27, 2026
-
Free, publicly-accessible full text available August 10, 2026
-
Free, publicly-accessible full text available June 4, 2026
An official website of the United States government
