skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2433726

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BackgroundThe global burden of Alzheimer's disease and related dementias is rapidly increasing, particularly in low- and middle-income countries where access to specialized healthcare is limited. Neuropsychological tests are essential diagnostic tools, but their administration requires trained professionals, creating screening barriers. Automated computational assessment presents a cost-effective solution for global dementia screening. ObjectiveTo develop and validate an artificial intelligence-based screening tool using the Trail Making Test (TMT), demographic information, completion times, and drawing analysis for enhanced dementia detection. MethodsWe developed: (1) non-image models using demographics and TMT completion times, (2) image-only models, and (3) fusion models. Models were trained and validated on data from the Framingham Heart Study (FHS) (N = 1252), the Long Life Family Study (LLFS) (N = 1613), and the combined cohort (N = 2865). ResultsOur models, integrating TMT drawings, demographics, and completion times, excelled in distinguishing dementia from normal cognition. In the LLFS cohort, we achieved an Area Under the Receiver Operating Characteristic Curve (AUC) of 98.62%, with sensitivity/specificity of 87.69%/98.26%. In the FHS cohort, we obtained an AUC of 96.51%, with sensitivity/specificity of 85.00%/96.75%. ConclusionsOur method demonstrated superior performance compared to traditional approaches using age and TMT completion time. Adding images captures subtler nuances from the TMT drawing that traditional methods miss. Integrating the TMT drawing into cognitive assessments enables effective dementia screening. Future studies could aim to expand data collection to include more diverse cohorts, particularly from less-resourced regions. 
    more » « less
    Free, publicly-accessible full text available July 17, 2026
  2. Abstract This study reports a comprehensive environmental scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions supported by the CTSA Program led by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) at the United States. Key findings indicate a diverse range of institutional strategies, with most organizations in the experimental phase of GenAI deployment. The results underscore the need for a more coordinated approach to GenAI governance, emphasizing collaboration among senior leaders, clinicians, information technology staff, and researchers. Our analysis reveals that 53% of institutions identified data security as a primary concern, followed by lack of clinician trust (50%) and AI bias (44%), which must be addressed to ensure the ethical and effective implementation of GenAI technologies. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  3. Abstract INTRODUCTIONIdentification of individuals with mild cognitive impairment (MCI) who are at risk of developing Alzheimer's disease (AD) is crucial for early intervention and selection of clinical trials. METHODSWe applied natural language processing techniques along with machine learning methods to develop a method for automated prediction of progression to AD within 6 years using speech. The study design was evaluated on the neuropsychological test interviews ofn = 166 participants from the Framingham Heart Study, comprising 90 progressive MCI and 76 stable MCI cases. RESULTSOur best models, which used features generated from speech data, as well as age, sex, and education level, achieved an accuracy of 78.5% and a sensitivity of 81.1% to predict MCI‐to‐AD progression within 6 years. DISCUSSIONThe proposed method offers a fully automated procedure, providing an opportunity to develop an inexpensive, broadly accessible, and easy‐to‐administer screening tool for MCI‐to‐AD progression prediction, facilitating development of remote assessment. HighlightsVoice recordings from neuropsychological exams coupled with basic demographics can lead to strong predictive models of progression to dementia from mild cognitive impairment.The study leveraged AI methods for speech recognition and processed the resulting text using language models.The developed AI‐powered pipeline can lead to fully automated assessment that could enable remote and cost‐effective screening and prognosis for Alzehimer's disease. 
    more » « less
  4. Free, publicly-accessible full text available December 1, 2026
  5. Free, publicly-accessible full text available July 3, 2026
  6. Free, publicly-accessible full text available May 19, 2026
  7. Free, publicly-accessible full text available May 1, 2026
  8. Free, publicly-accessible full text available May 1, 2026
  9. Free, publicly-accessible full text available January 1, 2026
  10. Free, publicly-accessible full text available January 1, 2026