skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2436343

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this Letter, we introduce FusionNet, a multi-modality deep learning framework designed to predict and analyze output pulses in high-power rare-earth-doped laser systems driving parametric conversion in homogeneous guided nonlinear media. FusionNet integrates temporal, spectral, and physical experimental conditions to model ultrafast nonlinear phenomena, including parametric nonlinear frequency conversion, self-phase modulation, and cross-phase modulation in homogeneous guided systems such as gas-filled hollow-core fibers. These systems bridge physical models with experimental data, advancing our understanding of light-guiding principles and nonlinear interactions while expediting the design and optimization of on-demand high-power, high-brightness systems. Our results demonstrate a 73% reduction in prediction error and an 83% improvement in computational efficiency compared to conventional neural networks. This work establishes a new paradigm for accelerating parametric simulations and optimizing experimental designs in high-power laser systems, with further implications for high-precision spectroscopy, quantum information science, and distributed entangled interconnects. 
    more » « less