skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2437030

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aichholzer, Oswin; Wang, Haitao (Ed.)
    Given a zigzag filtration, we want to find its barcode representatives, i.e., a compatible choice of bases for the homology groups that diagonalize the linear maps in the zigzag. To achieve this, we convert the input zigzag to a levelset zigzag of a real-valued function. This function generates a Mayer-Vietoris pyramid of spaces, which generates an infinite strip of homology groups. We call the origins of indecomposable (diamond) summands of this strip their apexes and give an algorithm to find representative cycles in these apexes from ordinary persistence computation. The resulting representatives map back to the levelset zigzag and thus yield barcode representatives for the input zigzag. Our algorithm for lifting a p-dimensional cycle from ordinary persistence to an apex representative takes O(p ⋅ m log m) time. From this we can recover zigzag representatives in time O(log m + C), where C is the size of the output. 
    more » « less