skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2438328

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract On 24 April 2023, an ICME reached Earth's orbit. The solar wind density dropped to 0.3 amu/cc while the IMF strength was about 25 nT. As a result, the solar wind flow transitions to a sub‐Alfvénic state with an Alfvén Mach number of 0.4. We carry out global magnetohydrodynamic simulations to investigate the responses of Earth's magnetosphere to the ICME ejecta. The results show the formation of Alfvén wings as the solar wind becomes sub‐Alfvénic. Furthermore, the sub‐Alfvénic period was characterized by the dominance of the IMF component, causing the Alfvén wings to extend toward the dawn and dusk flanks. We investigate the global magnetospheric convection of this sub‐ Alfvénic case and find that the overall convection is mediated by the Alfvén wings, while the magnetic field convection in inner magnetosphere is similar to the super‐Alfvénic case. 
    more » « less
    Free, publicly-accessible full text available March 28, 2026
  2. Abstract To study the average contributions of the cusp outflow through the lobes and of the nightside auroral outflow to the O+in the plasma sheet (PS), we performed a statistical study of tailward streaming O+in the lobes, plasma sheet boundary layer|the plasma sheet boundary layer (PSBL) and the PS, using MMS/Hot Plasma Composition Analyzer (HPCA) data from 2017 to 2020. Similar spatial patterns illustrate the entry of cusp‐origin O+from the lobes to the PS through the PSBL. There is an YGSM‐dependent energy pattern for the lobe O+, with low‐energy O+streaming closer to the tail center and high energy (1–3 keV) O+streaming near the flanks. Low energy (1–100 eV) O+from the nightside auroral oval is identified in the near‐Earth PSBL/PS with high‐density (>0.02 cm−3), and energetic (>3 keV) streaming O+with similar density (∼0.013 cm−3) is observed further out on the duskside of the PSBL/PS. The rest of the nightside auroral O+in the PSBL is mixed with O+coming in from the lobe, making it difficult to distinguish the source. We estimated the contributions of the different sources of H+and O+ions through the PS between 7 and 17 RE, using estimates from this work and data extracted from previous studies. We conclude that, during quiet times, the majority of the near‐Earth PS H+are from the cusps, the polar wind and Earthward convection from the distant tail. Similarly, while the O+in the same region has a mixed source, cusp origin outflow provides the highest contribution. 
    more » « less