Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aichholzer, Oswin; Wang, Haitao (Ed.)The πβΒ² min-sum k-clustering problem is to partition an input set into clusters C_1,β¦,C_k to minimize β_{i=1}^k β_{p,q β C_i} βp-qββΒ². Although πβΒ² min-sum k-clustering is NP-hard, it is not known whether it is NP-hard to approximate πβΒ² min-sum k-clustering beyond a certain factor. In this paper, we give the first hardness-of-approximation result for the πβΒ² min-sum k-clustering problem. We show that it is NP-hard to approximate the objective to a factor better than 1.056 and moreover, assuming a balanced variant of the Johnson Coverage Hypothesis, it is NP-hard to approximate the objective to a factor better than 1.327. We then complement our hardness result by giving a fast PTAS for πβΒ² min-sum k-clustering. Specifically, our algorithm runs in time O(n^{1+o(1)}dβ 2^{(k/Ξ΅)^O(1)}), which is the first nearly linear time algorithm for this problem. We also consider a learning-augmented setting, where the algorithm has access to an oracle that outputs a label i β [k] for input point, thereby implicitly partitioning the input dataset into k clusters that induce an approximately optimal solution, up to some amount of adversarial error Ξ± β [0,1/2). We give a polynomial-time algorithm that outputs a (1+Ξ³Ξ±)/(1-Ξ±)Β²-approximation to πβΒ² min-sum k-clustering, for a fixed constant Ξ³ > 0.more » « less
-
Benoit, Anne; Kaplan, Haim; Wild, Sebastian; Herman, Grzegorz (Ed.){"Abstract":["The classical rank aggregation problem seeks to combine a set X of n permutations into a single representative "consensus" permutation. In this paper, we investigate two fundamental rank aggregation tasks under the well-studied Ulam metric: computing a median permutation (which minimizes the sum of Ulam distances to X) and computing a center permutation (which minimizes the maximum Ulam distance to X) in two settings.\r\n- Continuous Setting: In the continuous setting, the median/center is allowed to be any permutation. It is known that computing a center in the Ulam metric is NP-hard and we add to this by showing that computing a median is NP-hard as well via a simple reduction from the Max-Cut problem. While this result may not be unexpected, it had remained elusive until now and confirms a speculation by Chakraborty, Das, and Krauthgamer [SODA '21].\r\n- Discrete Setting: In the discrete setting, the median/center must be a permutation from the input set. We fully resolve the fine-grained complexity of the discrete median and discrete center problems under the Ulam metric, proving that the naive OΜ(nΒ² L)-time algorithm (where L is the length of the permutation) is conditionally optimal. This resolves an open problem raised by Abboud, Bateni, Cohen-Addad, Karthik C. S., and Seddighin [APPROX '23]. Our reductions are inspired by the known fine-grained lower bounds for similarity measures, but we face and overcome several new highly technical challenges."]}more » « less
An official website of the United States government
