skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2443992

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transformer-based models have demonstrated superior performance in various fields, including natural language processing and computer vision. However, their enormous model size and high demands in computation, memory, and communication limit their deployment to edge platforms for local, secure inference. Binary transformers offer a compact, low-complexity solution for edge deployment with reduced bandwidth needs and acceptable accuracy. However, existing binary transformers perform inefficiently on current hardware due to the lack of binary specific optimizations. To address this, we introduce COBRA, an algorithm-architecture co-optimized binary Transformer accelerator for edge computing. COBRA features a real 1-bit binary multiplication unit, enabling matrix operations with -1, 0, and +1 values, surpassing ternary methods. With further hardware-friendly optimizations in the attention block, COBRA achieves up to 3,894.7 GOPS throughput and 448.7 GOPS/Watt energy efficiency on edge FPGAs, delivering a 311× energy efficiency improvement over GPUs and a 3.5× throughput improvement over the state-of-the-art binary accelerator, with only negligible inference accuracy degradation. 
    more » « less
    Free, publicly-accessible full text available October 27, 2026
  2. With the emergence of wearable devices and other embedded systems, deploying large language models (LLMs) on edge platforms has become an urgent need. However, this is challenging because of their high computational and memory demands. Although recent low-bit quantization methods (e.g., BitNet, DeepSeek) compress weights to as low as 1.58~bits with minimal accuracy loss, edge deployment is still constrained by limited on-chip resources, power budgets, and the often-neglected long latency of the prefill stage. We present TeLLMe, the first table-lookup-based ternary LLM accelerator for low-power edge FPGAs that fully supports both prefill and autoregressive decoding using 1.58-bit weights and 8-bit activations. TeLLMe incorporates several novel techniques, including (1) a table-lookup-based ternary matrix multiplication (TLMM) engine utilizing grouped activations and online precomputation for low resource utilization and high throughput; (2) a fine-grained analytic URAM-based weight buffer management scheme for efficient loading and compute engine access; (3) a streaming dataflow architecture that fuses floating-point element-wise operations with linear computations to hide latency; (4) a reversed-reordered prefill stage attention with fused attention operations for high memory efficiency; and (5) a resource-efficient specialized decoding stage attention. Under a 5~W power budget, TeLLMe delivers up to 25~tokens/s decoding throughput and 0.45--0.96~s time-to-first-token (TTFT) for 64--128 token prompts, marking a significant energy-efficiency advancement in LLM inference on edge FPGAs. 
    more » « less
    Free, publicly-accessible full text available October 21, 2026
  3. Path planning is a critical task for autonomous driving, aiming to generate smooth, collision-free, and feasible paths based on input perception and localization information. The planning task is both highly time-sensitive and computationally intensive, posing significant challenges to resource-constrained autonomous driving hardware. In this article, we propose an end-to-end framework for accelerating path planning on FPGA platforms. This framework focuses on accelerating quadratic programming (QP) solving, which is the core of optimization-based path planning and has the most computationally-intensive workloads. Our method leverages a hardware-friendly alternating direction method of multipliers (ADMM) to solve QP problems while employing a highly parallelizable preconditioned conjugate gradient (PCG) method for solving the associated linear systems. We analyze the sparse patterns of matrix operations in QP and design customized storage schemes along with efficient sparse matrix multiplication and sparse matrix-vector multiplication units. Our customized design significantly reduces resource consumption for data storage and computation while dramatically speeding up matrix operations. Additionally, we propose a multi-level dataflow optimization strategy. Within individual operators, we achieve acceleration through parallelization and pipelining. For different operators in an algorithm, we analyze inter-operator data dependencies to enable fine-grained pipelining. At the system level, we map different steps of the planning process to the CPU and FPGA and pipeline these steps to enhance end-to-end throughput. We implement and validate our design on the AMD ZCU102 platform. Our implementation achieves state-of-the-art performance in both latency and energy efficiency compared with existing works, including an average 1.48× speedup over the best FPGA-based design, a 2.89× speedup compared with the state-of-the-art QP solver on an Intel i7-11800H CPU, a 5.62× speedup over an ARM Cortex-A57 embedded CPU, and a 1.56× speedup over state-of-the-art GPU-based work. Furthermore, our design delivers a 2.05× improvement in throughput compared with the state-of-the-art FPGA-based design. 
    more » « less
    Free, publicly-accessible full text available September 30, 2026
  4. The demand for machine intelligence capable of processing continuous, long-context inputs on local devices is growing rapidly. However, the quadratic complexity and memory requirements of traditional Transformer architectures make them inefficient and often unusable for these tasks. This has spurred a paradigm shift towards new architectures like State Space Models (SSMs) and hybrids, which promise near-linear scaling. While most current research focuses on the accuracy and theoretical throughput of these models, a systematic performance characterization on practical consumer hardware is critically needed to guide system-level optimization and unlock new applications. To address this gap, we present a comprehensive, comparative benchmarking of carefully selected Transformer, SSM, and hybrid models specifically for long-context inference on consumer and embedded GPUs. Our analysis reveals that SSMs are not only viable but superior for this domain, capable of processing sequences up to 220K tokens on a 24GB consumer GPU-approximately 4x longer than comparable Transformers. While Transformers may be up to 1.8x faster at short sequences, SSMs demonstrate a dramatic performance inversion, becoming up to 4x faster at very long contexts (~57K tokens). Our operator-level analysis reveals that custom, hardware-aware SSM kernels dominate the inference runtime, accounting for over 55% of latency on edge platforms, identifying them as a primary target for future hardware acceleration. We also provide detailed, device-specific characterization results to guide system co-design for the edge. 
    more » « less
    Free, publicly-accessible full text available July 19, 2026
  5. The growth rate of the GPU memory capacity has not been able to keep up with that of the size of large language models (LLMs), hindering the model training process. In particular, activations—the intermediate tensors produced during forward propagation and reused in backward propagation—dominate the GPU memory use. This leads to high training overheads such as expensive weight update costs due to the small micro-batch size. To address this challenge, we propose SSDTrain, an adaptive activation offloading framework to high-capacity NVMe SSDs. SSDTrain reduces GPU memory usage without impacting performance by fully overlapping data transfers with computation. SSDTrain is compatible with popular deep learning frameworks like PyTorch, Megatron, and DeepSpeed, and it employs techniques such as tensor deduplication and forwarding to further enhance efficiency. We extensively experimented with popular LLMs like GPT, BERT, and T5. Results demonstrate that SSDTrain reduces 47% of the activation peak memory usage. At the same time, SSDTrain perfectly overlaps the I/O with the computation and incurs negligible overhead. Compared with keeping activations in GPU memory and layerwise full recomputation, SSDTrain achieves the best memory savings with negligible throughput loss. We further analyze how the reduced activation memory use may be leveraged to increase throughput by increasing micro-batch size and reducing pipeline parallelism bubbles. 
    more » « less
    Free, publicly-accessible full text available June 22, 2026
  6. The end of Moore’s Law and Dennard scaling has driven the proliferation of heterogeneous systems with accelerators, including CPUs, GPUs, and FPGAs, each with distinct architectures, compilers, and programming environments. GPUs excel at massively parallel processing for tasks like deep learning training and graphics rendering, while FPGAs offer hardware-level flexibility and energy efficiency for low-latency, high-throughput applications. In contrast, CPUs, while general-purpose, often fall short in high-parallelism or power-constrained applications. This architectural diversity makes it challenging to compare these accelerators effectively, leading to uncertainty in selecting optimal hardware and software tools for specific applications. To address this challenge, we introduce HeteroBench, a versatile benchmark suite for heterogeneous systems. HeteroBench allows users to evaluate multi-compute kernel applications across various accelerators, including CPUs, GPUs (from NVIDIA, AMD, Intel), and FPGAs (AMD), supporting programming environments of Python, Numba-accelerated Python, serial C++, OpenMP (both CPUs and GPUs), OpenACC and CUDA for GPUs, and Vitis HLS for FPGAs. This setup enables users to assign kernels to suitable hardware platforms, ensuring comprehensive device comparisons. What makes HeteroBench unique is its vendor-agnostic, cross-platform approach, spanning diverse domains such as image processing, machine learning, numerical computation, and physical simulation, ensuring deeper insights for HPC optimization. Extensive testing across multiple systems provides practical reference points for HPC practitioners, simplifying hardware selection and performance tuning for both developers and end-users alike. This suite may assist to make more informed decision on AI/ML deployment and HPC development, making it an invaluable resource for advancing academic research and industrial applications. 
    more » « less
    Free, publicly-accessible full text available May 5, 2026