skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2505285

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Allele-specific expression quantification from RNA-seq reads provides opportunities to study the control of gene regulatory networks bycis-acting andtrans-acting genetic variants. Many existing methods performed a single-gene and single-SNP association analysis to identify expression quantitative trait loci (eQTLs), and placed the eQTLs against known gene networks for functional interpretation. Instead, we view eQTL data as a capture of the effects of perturbation of gene regulatory system by a large number of genetic variants and reconstruct a gene network perturbed by eQTLs. We introduce a statistical framework called CiTruss for simultaneously learning a gene network andcis-acting andtrans-acting eQTLs that perturb this network, given population allele-specific expression and SNP data. CiTruss uses a multi-level conditional Gaussian graphical model to modeltrans-acting eQTLs perturbing the expression of both alleles in gene network at the top level andcis-acting eQTLs perturbing the expression of each allele at the bottom level. We derive a transformation of this model that allows efficient learning for large-scale human data. Our analysis of the GTEx and LGĂ—SM advanced intercross line mouse data for multiple tissue types with CiTruss provides new insights into genetics of gene regulation. CiTruss revealed that gene networks consist of local subnetworks over proximally located genes and global subnetworks over genes scattered across genome, and that several aspects of gene regulation by eQTLs such as the impact of genetic diversity, pleiotropy, tissue-specific gene regulation, and local and long-range linkage disequilibrium among eQTLs can be explained through these local and global subnetworks. 
    more » « less
  2. Allele-specific expression has been used to elucidate various biological mechanisms, such as genomic imprinting and gene expression variation caused by genetic changes in cis-regulatory elements. However, existing methods for obtaining allele-specific expression from RNA-seq reads do not adequately and efficiently remove various biases, such as reference bias, where reads containing the alternative allele do not map to the reference transcriptome, or ambiguous mapping bias, where reads containing the reference allele map differently from reads containing the alternative allele. We present Ornaments, a computational tool for rapid and accurate estimation of allele-specific expression at unphased heterozygous loci from RNA-seq reads while correcting for allele-specific read mapping bias. Ornaments removes reference bias by mapping reads to a personalized transcriptome, and ambiguous mapping bias by probabilistically assigning reads to multiple transcripts and variant loci they map to. Ornaments is a lightweight extension of kallisto, a popular tool for fast RNA-seq quantification, that improves the efficiency and accuracy of WASP, a popular tool for bias correction in allele-specific read mapping. Our experiments on simulated and human lymphoblastoid cell-line RNA-seq reads with the genomes of the 1000 Genomes Project show that Ornaments is more accurate than WASP and kallisto and nearly as efficient as kallisto per sample, and despite the additional cost of constructing a personalized index for multiple samples, an order of magnitude faster than WASP. In addition, Ornaments detected imprinted transcripts with higher sensitivity, compared to WASP which detected the imprinted signals only at the gene level. 
    more » « less
  3. Multi-output Gaussian process (GP) regression has been widely used as a flexible nonparametric Bayesian model for predicting multiple correlated outputs given inputs. However, the cubic complexity in the sample size and the output dimensions for inverting the kernel matrix has limited their use in the large-data regime. In this paper, we introduce the factorial stochastic differential equation as a representation of multi-output GP regression, which is a factored state-space representation as in factorial hidden Markov models. We propose a structured mean-field variational inference approach that achieves a time complexity linear in the number of samples, along with its sparse variational inference counterpart with complexity linear in the number of inducing points. On simulated and real-world data, we show that our approach significantly improves upon the scalability of previous methods, while achieving competitive prediction accuracy. 
    more » « less