skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2505719

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Online Anomaly Detection (OAD) is critical for identifying rare yet important data points in large, dynamic, and complex data streams. A key challenge lies in achieving accurate and consistent detection of anomalies while maintaining computational and memory efficiency. Conventional OAD approaches, which depend on distributional deviations and static thresholds, struggle with model update delays and catastrophic forgetting, leading to missed detections and high false positive rates. To address these limitations, we propose a novel Streaming Anomaly Detection (SAD) method, grounded in a sparse active online learning framework. Our approach uniquely integrates ℓ1,2-norm sparse online learning with CUR decomposition-based active learning, enabling simultaneous fast feature selection and dynamic instance selection. The efficient CUR decomposition further supports real-time residual analysis for anomaly scoring, eliminating the need for manual threshold settings about temporal data distributions. Extensive experiments on diverse streaming datasets demonstrate SAD's superiority, achieving a 14.06% reduction in detection error rates compared to five state-of-the-art competitors. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  3. This paper presents HGEN that pioneers ensemble learning for heterogeneous graphs. We argue that the heterogeneity in node types, nodal features, and local neighborhood topology poses significant challenges for ensemble learning, particularly in accommodating diverse graph learners. Our HGEN framework ensembles multiple learners through a meta-path and transformation-based optimization pipeline to uplift classification accuracy. Specifically, HGEN uses meta-path combined with random dropping to create Allele Graph Neural Networks (GNNs), whereby the base graph learners are trained and aligned for later ensembling. To ensure effective ensemble learning, HGEN presents two key components:1) a residual-attention mechanism to calibrate allele GNNs of different meta-paths, thereby enforcing node embeddings to focus on more informative graphs to improve base learner accuracy, and 2) a correlation-regularization term to enlarge the disparity among embedding matrices generated from different meta-paths, thereby enriching base learner diversity. We analyze the convergence of HGEN and attest its higher regularization magnitude over simple voting. Experiments on five heterogeneous networks validate that HGEN consistently outperforms its state-of-the-art competitors by substantial margin. Codes are available at https://github.com/Chrisshen12/HGEN. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  4. Free, publicly-accessible full text available July 15, 2026