skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2507117

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, several information-theoretic upper bounds have been introduced on the output size and evaluation cost of database join queries. These bounds vary in their power depending on both the type of statistics on input relations and the query plans that they support. This motivated the search for algorithms that can compute the output of a join query in times that are bounded by the corresponding information-theoretic bounds. In this paper, we describe PANDA, an algorithm that takes a Shannon-inequality that underlies the bound, and translates each proof step into an algorithmic step corresponding to some database operation. PANDA computes answers to a conjunctive query in time given by the the submodular width plus the output size of the query. The version in this paper represents a significant simplification of the original version [ANS, PODS'17]. Comment: 42 pages. This is the TheoretiCS journal version 
    more » « less
    Free, publicly-accessible full text available April 30, 2026