Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The detection of GW170817 and the measurement of its redshift from the associated electromagnetic counterpart provided the first gravitational-wave (GW) determination of the Hubble constant (H0), demonstrating the potential power of standard siren cosmology. In contrast to this “bright siren” approach, the “dark siren” approach can be utilized for GW sources in the absence of an electromagnetic counterpart: One considers all galaxies contained within the localization volume as potential hosts. When statistically averaging over the potential host galaxies, weighting them by physically motivated properties (e.g., tracing star formation or stellar mass) could improve convergence. Using mock galaxy catalogs, we explore the impact of these weightings on the measurement ofH0. We find that incorrect weighting schemes can lead to significant biases due to two effects: the assumption of an incorrect galaxy redshift distribution, and preferentially weighting incorrect host galaxies during the inference. The magnitudes of these biases are influenced by the number of galaxies along each line of sight, the measurement uncertainty in the GW luminosity distance, and correlations in the parameter space of galaxies. We show that the bias may be overcome from improved localization constraints in future GW detectors, a strategic choice of priors or weighting prescription, and by restricting the analysis to a subset of high-signal-to-noise ratio events. We propose the use of hierarchical inference as a diagnostic of incorrectly weighted prescriptions. Such approaches can simultaneously infer the correct weighting scheme and the values of the cosmological parameters, thereby mitigating the bias in dark siren cosmology due to incorrect host-galaxy weighting.more » « less
- 
            Abstract Gravitational waves (GWs) from merging compact objects encode direct information about the luminosity distance to the binary. When paired with a redshift measurement, this enables standard-siren cosmology: a Hubble diagram can be constructed to directly probe the Universe’s expansion. This can be done in the absence of electromagnetic measurements, as features in the mass distribution of GW sources provide self-calibrating redshift measurements without the need for a definite or probabilistic host galaxy association. This “spectral siren” technique has thus far only been applied with simple parametric representations of the mass distribution, and theoretical predictions for features in the mass distribution are commonly presumed to be fundamental to the measurement. However, the use of an inaccurate representation leads to biases in the cosmological inference, an acute problem given the current uncertainties in true source population. Furthermore, it is commonly presumed that the form of the mass distribution must be known a priori to obtain unbiased measurements of cosmological parameters in this fashion. Here, we demonstrate that spectral sirens can accurately infer cosmological parameters without such prior assumptions. We apply a flexible, nonparametric model for the mass distribution of compact binaries to a simulated catalog of 1000 GW signals, consistent with expectations for the next LIGO–Virgo–KAGRA observing run. We find that, despite our model’s flexibility, both the source mass model and cosmological parameters are correctly reconstructed. We predict a 11.2%✎measurement ofH0, keeping all other cosmological parameters fixed, and a 6.4%✎measurement ofH(z= 0.9)✎when fitting for multiple cosmological parameters (1σuncertainties). This astrophysically agnostic spectral siren technique will be essential to arrive at precise and unbiased cosmological constraints from GW source populations.more » « less
- 
            Free, publicly-accessible full text available November 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
